More method functions.

This commit is contained in:
Bodo Möller 2001-03-07 20:56:48 +00:00
parent 60428dbf0a
commit e869d4bd32
5 changed files with 168 additions and 12 deletions

View file

@ -133,7 +133,7 @@ int EC_POINT_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
int EC_POINT_is_at_infinity(const EC_GROUP *, const EC_POINT *);
int EC_POINT_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int EC_POINT_make_affine(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int EC_POINT_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
@ -150,6 +150,7 @@ int EC_POINT_make_affine(const EC_GROUP *, const EC_POINT *, BN_CTX *);
/* Function codes. */
#define EC_F_EC_GFP_SIMPLE_GROUP_SET_GENERATOR 117
#define EC_F_EC_GFP_SIMPLE_MAKE_AFFINE 118
#define EC_F_EC_GROUP_CLEAR_FREE 103
#define EC_F_EC_GROUP_COPY 102
#define EC_F_EC_GROUP_FREE 104

View file

@ -67,6 +67,7 @@
static ERR_STRING_DATA EC_str_functs[]=
{
{ERR_PACK(0,EC_F_EC_GFP_SIMPLE_GROUP_SET_GENERATOR,0), "EC_GFP_SIMPLE_GROUP_SET_GENERATOR"},
{ERR_PACK(0,EC_F_EC_GFP_SIMPLE_MAKE_AFFINE,0), "EC_GFP_SIMPLE_MAKE_AFFINE"},
{ERR_PACK(0,EC_F_EC_GROUP_CLEAR_FREE,0), "EC_GROUP_clear_free"},
{ERR_PACK(0,EC_F_EC_GROUP_COPY,0), "EC_GROUP_copy"},
{ERR_PACK(0,EC_F_EC_GROUP_FREE,0), "EC_GROUP_free"},

View file

@ -99,7 +99,7 @@ struct ec_method_st {
/* used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_make_affine */
int (*is_at_infinity)(const EC_GROUP *, const EC_POINT *);
int (*is_on_curve)(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int (*make_affine)(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *);
/* internal functions */
@ -134,7 +134,7 @@ struct ec_group_st {
* or abused for all kinds of fields, not just GF(p).)
* For characteristic > 3, the curve is defined
* by a Weierstrass equation of the form
* Y^2 = X^3 + a*X + b.
* y^2 = x^3 + a*x + b.
*/
int a_is_minus3; /* enable optimized point arithmetics for special case */
@ -197,7 +197,7 @@ int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC
int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int ec_GFp_simple_make_affine(const EC_GROUP *, const EC_POINT *, BN_CTX *);
int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *);
int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);

View file

@ -421,7 +421,7 @@ int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *c
}
int EC_POINT_make_affine(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
if (group->meth->make_affine == 0)
{

View file

@ -385,8 +385,8 @@ int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, con
{
/* a is the same point as b */
BN_CTX_end(ctx);
ctx = NULL;
ret = EC_POINT_dbl(group, r, a, ctx);
ctx = NULL;
goto end;
}
else
@ -491,8 +491,6 @@ int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_
n3 = BN_CTX_get(ctx);
if (n3 == NULL) goto err;
/* TODO: optimization for group->a_is_minus3 */
/* n1 */
if (a->Z_is_one)
{
@ -577,12 +575,168 @@ int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
}
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx);
/* TODO */
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
{
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *rh, *tmp1, *tmp2, *Z4, *Z6;
int ret = -1;
if (EC_POINT_is_at_infinity(group, point))
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
if (ctx == NULL)
{
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
rh = BN_CTX_get(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
Z4 = BN_CTX_get(ctx);
Z6 = BN_CTX_get(ctx);
if (Z6 == NULL) goto err;
/* We have a curve defined by a Weierstrass equation
* y^2 = x^3 + a*x + b.
* The point to consider is given in Jacobian projective coordinates
* where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
* Substituting this and multiplying by Z^6 transforms the above equation into
* Y^2 = X^3 + a*X*Z^4 + b*Z^6.
* To test this, we add up the right-hand side in 'rh'.
*/
/* rh := X^3 */
if (!field_sqr(group, rh, &point->X, ctx)) goto err;
if (!field_mul(group, rh, rh, &point->X, ctx)) goto err;
if (!point->Z_is_one)
{
if (!field_sqr(group, tmp1, &point->Z, ctx)) goto err;
if (!field_sqr(group, Z4, tmp1, ctx)) goto err;
if (!field_mul(group, Z6, Z4, tmp1, ctx)) goto err;
/* rh := rh + a*X*Z^4 */
if (!field_mul(group, tmp1, &point->X, Z4, ctx)) goto err;
if (&group->a_is_minus3)
{
if (!BN_mod_lshift1_quick(tmp2, tmp1, p)) goto err;
if (!BN_mod_add_quick(tmp2, tmp2, tmp1, p)) goto err;
if (!BN_mod_sub_quick(rh, rh, tmp2, p)) goto err;
}
else
{
if (!field_mul(group, tmp2, tmp1, &group->a, ctx)) goto err;
if (!BN_mod_add_quick(rh, rh, tmp2, p)) goto err;
}
/* rh := rh + b*Z^6 */
if (!field_mul(group, tmp1, &group->b, Z6, ctx)) goto err;
if (!BN_mod_add_quick(rh, rh, tmp1, p)) goto err;
}
else
{
/* point->Z_is_one */
/* rh := rh + a*X */
if (&group->a_is_minus3)
{
if (!BN_mod_lshift1_quick(tmp2, &point->X, p)) goto err;
if (!BN_mod_add_quick(tmp2, tmp2, &point->X, p)) goto err;
if (!BN_mod_sub_quick(rh, rh, tmp2, p)) goto err;
}
else
{
if (!field_mul(group, tmp2, &point->X, &group->a, ctx)) goto err;
if (!BN_mod_add_quick(rh, rh, tmp2, p)) goto err;
}
/* rh := rh + b */
if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err;
}
/* 'lh' := Y^2 */
if (!field_sqr(group, tmp1, &point->Y, ctx)) goto err;
ret = (0 == BN_cmp(tmp1, rh));
err:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_make_affine(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx);
/* TODO */
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
int ret = 0;
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
return 1;
if (ctx == NULL)
{
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
Z = BN_CTX_get(ctx);
Z_1 = BN_CTX_get(ctx);
Z_2 = BN_CTX_get(ctx);
Z_3 = BN_CTX_get(ctx);
if (Z_3 == NULL) goto end;
/* transform (X, Y, Z) into (X/Z^2, Y/Z^3, 1) */
if (group->meth->field_decode)
{
if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto end;
}
else
Z = &point->Z;
if (BN_is_one(Z))
{
point->Z_is_one = 1;
ret = 1;
goto end;
}
if (!BN_mod_inverse(Z_1, Z, &group->field, ctx))
{
ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_BN_LIB);
goto end;
}
if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto end;
if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto end;
if (!BN_mod_mul(&point->X, &point->X, Z_2, &group->field, ctx)) goto end;
if (!BN_mod_mul(&point->Y, &point->Y, Z_2, &group->field, ctx)) goto end;
if (!BN_set_word(&point->Z, 1)) goto end;
point->Z_is_one = 1;
ret = 1;
end:
BN_CTX_end(ctx);
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)