This commit destroys the free list pointers which would otherwise be
present in the returned memory blocks. This in turn helps prevent
information leakage from the secure memory area.
Note: CRYPTO_secure_malloc is not guaranteed to return zeroed memory:
before the secure memory system is initialised or if it isn't implemented.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7011)
that needed test_main now works using the same infrastructure as tests that used
register_tests.
This meant:
* renaming register_tests to setup_tests and giving it a success/failure return.
* renaming the init_test function to setup_test_framework.
* renaming the finish_test function to pulldown_test_framework.
* adding a user provided global_init function that runs before the test frame
work is initialised. It returns a failure indication that stops the stest.
* adding helper functions that permit tests to access their command line args.
* spliting the BIO initialisation and finalisation out from the test setup and
teardown.
* hiding some of the now test internal functions.
* fix the comments in testutil.h
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3953)
Fix the small arena test to just check for the symptom of the infinite
loop (i.e. initialized set on failure), rather than the actual infinite
loop. This avoids some valgrind errors.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3512)
Remove assertion when mmap() fails.
Only run the 1<<31 limit test on Linux
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3455)
Issue 1:
sh.bittable_size is a size_t but i is and int, which can result in
freelist == -1 if sh.bittable_size exceeds an int.
This seems to result in an OPENSSL_assert due to invalid allocation
size, so maybe that is "ok."
Worse, if sh.bittable_size is exactly 1<<31, then this becomes an
infinite loop (because 1<<31 is a negative int, so it can be shifted
right forever and sticks at -1).
Issue 2:
CRYPTO_secure_malloc_init() sets secure_mem_initialized=1 even when
sh_init() returns 0.
If sh_init() fails, we end up with secure_mem_initialized=1 but
sh.minsize=0. If you then call secure_malloc(), which then calls,
sh_malloc(), this then enters an infite loop since 0 << anything will
never be larger than size.
Issue 3:
That same sh_malloc loop will loop forever for a size greater
than size_t/2 because i will proceed (assuming sh.minsize=16):
i=16, 32, 64, ..., size_t/8, size_t/4, size_t/2, 0, 0, 0, 0, ....
This sequence will never be larger than "size".
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3449)
It isn't easy to use the test framework since it turns memory debugging
on as well and the CRYPTO_mem_leaks_fp function cannot be called twice.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3169)
Fix some of the variables to be (s)size_t, so that more than 1GB of
secure memory can be allocated. The arena has to be a power of 2, and
2GB fails because it ends up being a negative 32-bit signed number.
The |too_late| flag is not strictly necessary; it is easy to figure
out if something is secure memory by looking at the arena. As before,
secure memory allocations will not fail, but now they can be freed
correctly. Once initialized, secure memory can still be used, even if
allocations occured before initialization.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Add secure heap for storage of private keys (when possible).
Add BIO_s_secmem(), CBIGNUM, etc.
Add BIO_CTX_secure_new so all BIGNUM's in the context are secure.
Contributed by Akamai Technologies under the Corporate CLA.
Reviewed-by: Richard Levitte <levitte@openssl.org>