The name length limit check in x509_name_ex_d2i() includes
the containing structure as well as the actual X509_NAME. This will
cause large CRLs to be rejected.
Fix by limiting the length passed to ASN1_item_ex_d2i() which will
then return an error if the passed X509_NAME exceeds the length.
RT#4531
Reviewed-by: Rich Salz <rsalz@openssl.org>
The old BIO_accept() function can encounter errors during malloc. We need
to ensure we properly clean up if that occurs.
GH Issue #817
Reviewed-by: Richard Levitte <levitte@openssl.org>
The init_client() function in the apps sets up the client connection. It
may try multiple addresses until it finds one that works. We should clear
the error queue if we eventually get a successful connection because
otherwise we get stale errors hanging around. This can cause problems in
subsequent calls to SSL_get_error(), i.e. non-fatal NBIO events appear as
fatal.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Some non-Gnu compilers interpret -E -P combination differently.
some prioritize -E over -P, others -P over -E (in which case .i
file is generated and sometimes truncated because of redirection).
Reviewed-by: Richard Levitte <levitte@openssl.org>
This replaces the old SKIP primes with the most current Diffie-Hellman
MODP groups defined by RFC 7296 and RFC 3526.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from GitHub https://github.com/openssl/openssl/pull/775)
Add tests for ASN.1 INTEGER: invalid tag, valid 0, 1, -1 and 0, -1 with
illegal padding.
Also add ASN1_ANY tests for 0, 1 and -1.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Only treat an ASN1_ANY type as an integer if it has the V_ASN1_INTEGER
tag: V_ASN1_NEG_INTEGER is an internal only value which is never used
for on the wire encoding.
Thanks to David Benjamin <davidben@google.com> for reporting this bug.
This was found using libFuzzer.
RT#4364 (part)CVE-2016-2108.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
With the EVP_EncodeUpdate function it is the caller's responsibility to
determine how big the output buffer should be. The function writes the
amount actually used to |*outl|. However this could go negative with a
sufficiently large value for |inl|. We add a check for this error
condition.
Reviewed-by: Richard Levitte <levitte@openssl.org>
An overflow can occur in the EVP_EncodeUpdate function which is used for
Base64 encoding of binary data. If an attacker is able to supply very large
amounts of input data then a length check can overflow resulting in a heap
corruption. Due to the very large amounts of data involved this will most
likely result in a crash.
Internally to OpenSSL the EVP_EncodeUpdate function is primarly used by the
PEM_write_bio* family of functions. These are mainly used within the
OpenSSL command line applications, so any application which processes
data from an untrusted source and outputs it as a PEM file should be
considered vulnerable to this issue.
User applications that call these APIs directly with large amounts of
untrusted data may also be vulnerable.
Issue reported by Guido Vranken.
CVE-2016-2105
Reviewed-by: Richard Levitte <levitte@openssl.org>
ASN1 Strings that are over 1024 bytes can cause an overread in
applications using the X509_NAME_oneline() function on EBCDIC systems.
This could result in arbitrary stack data being returned in the buffer.
Issue reported by Guido Vranken.
CVE-2016-2176
Reviewed-by: Andy Polyakov <appro@openssl.org>
An overflow can occur in the EVP_EncryptUpdate function. If an attacker is
able to supply very large amounts of input data after a previous call to
EVP_EncryptUpdate with a partial block then a length check can overflow
resulting in a heap corruption.
Following an analysis of all OpenSSL internal usage of the
EVP_EncryptUpdate function all usage is one of two forms.
The first form is like this:
EVP_EncryptInit()
EVP_EncryptUpdate()
i.e. where the EVP_EncryptUpdate() call is known to be the first called
function after an EVP_EncryptInit(), and therefore that specific call
must be safe.
The second form is where the length passed to EVP_EncryptUpdate() can be
seen from the code to be some small value and therefore there is no
possibility of an overflow.
Since all instances are one of these two forms, I believe that there can
be no overflows in internal code due to this problem.
It should be noted that EVP_DecryptUpdate() can call EVP_EncryptUpdate()
in certain code paths. Also EVP_CipherUpdate() is a synonym for
EVP_EncryptUpdate(). Therefore I have checked all instances of these
calls too, and came to the same conclusion, i.e. there are no instances
in internal usage where an overflow could occur.
This could still represent a security issue for end user code that calls
this function directly.
CVE-2016-2106
Issue reported by Guido Vranken.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Date: Tue Mar 15 15:19:44 2016 +0100
This commit updates the documentation of cms, ocsp, s_client,
s_server, and verify to reflect the new "-no_check_time"
option introduced in commit d35ff2c0ad
on 2015-07-31.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
If no serverinfo extension is found in some cases, do not abort the handshake,
but simply omit/skip that extension.
Check for already-registered serverinfo callbacks during serverinfo
registration.
Update SSL_CTX_use_serverinfo() documentation to mention the need to reload the
same serverinfo per certificate, for servers with multiple server certificates.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
The environment variable OPENSSL_LOCAL_CONFIG_DIR is used to indicate
that there's a local directory with extra configuration files.
Reviewed-by: Stephen Henson <steve@openssl.org>
Fix some of the variables to be (s)size_t, so that more than 1GB of
secure memory can be allocated. The arena has to be a power of 2, and
2GB fails because it ends up being a negative 32-bit signed number.
The |too_late| flag is not strictly necessary; it is easy to figure
out if something is secure memory by looking at the arena. As before,
secure memory allocations will not fail, but now they can be freed
correctly. Once initialized, secure memory can still be used, even if
allocations occured before initialization.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Usage of $ymm variable is a bit misleading here, it doesn't refer
to %ymm register bank, but rather to VEX instruction encoding,
which AMD XOP code path depends on.
Reviewed-by: Richard Levitte <levitte@openssl.org>