key-generation and prime-checking functions. Rather than explicitly passing
callback functions and caller-defined context data for the callbacks, a new
structure BN_GENCB is defined that encapsulates this; a pointer to the
structure is passed to all such functions instead.
This wrapper structure allows the encapsulation of "old" and "new" style
callbacks - "new" callbacks return a boolean result on the understanding
that returning FALSE should terminate keygen/primality processing. The
BN_GENCB abstraction will allow future callback modifications without
needing to break binary compatibility nor change the API function
prototypes. The new API functions have been given names ending in "_ex" and
the old functions are implemented as wrappers to the new ones. The
OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined,
declaration of the older functions will be skipped. NB: Some
openssl-internal code will stick with the older callbacks for now, so
appropriate "#undef" logic will be put in place - this is in case the user
is *building* openssl (rather than *including* its headers) with this
symbol defined.
There is another change in the new _ex functions; the key-generation
functions do not return key structures but operate on structures passed by
the caller, the return value is a boolean. This will allow for a smoother
transition to having key-generation as "virtual function" in the various
***_METHOD tables.
ENGINE surgery. DH, DSA, RAND, and RSA now use *both* "method" and ENGINE
pointers to manage their hooking with ENGINE. Previously their use of
"method" pointers was replaced by use of ENGINE references. See
crypto/engine/README for details.
Also, remove the ENGINE iterations from evp_test - even when the
cipher/digest code is committed in, this functionality would require a
different set of API calls.
dependant code has to directly increment the "references" value of each
such structure using the corresponding lock. Apart from code duplication,
this provided no "REF_CHECK/REF_PRINT" checking and violated
encapsulation.
sure they are available in opensslconf.h, by giving them names starting
with "OPENSSL_" to avoid conflicts with other packages and by making
sure e_os2.h will cover all platform-specific cases together with
opensslconf.h.
I've checked fairly well that nothing breaks with this (apart from
external software that will adapt if they have used something like
NO_KRB5), but I can't guarantee it completely, so a review of this
change would be a good thing.
was a really bad idea. For example, the following:
#include <x509.h>
#include <bio.h>
#include <asn1.h>
would make sure that things like ASN1_UTCTIME_print() wasn't defined
unless you moved the inclusion of bio.h to above the inclusion of
x509.h. The reason is that x509.h includes asn1.h, and the
declaration of ASN1_UTCTIME_print() depended on the definition of
HEADER_BIO_H. That's what I call an obscure bug.
Instead, this change makes sure that whatever header files are needed
for the correct process of one header file are included automagically,
and that the definitions of, for example, BIO-related things are
dependent on the absence of the NO_{foo} macros. This is also
consistent with the way parts of OpenSSL can be excluded at will.
"Jan Mikkelsen" <janm@transactionsite.com> correctly states that the
OpenSSL header files have #include's and extern "C"'s in an incorrect
order. Thusly fixed.
script, translates function codes better and doesn't need the K&R function
prototypes to work (NB. the K&R prototypes can't be wiped just yet: they are
still needed by the DEF generator...). I also ran the script with the -rewrite
option to update all the header and source files.