In the SSLV2ClientHello processing code in ssl3_get_record, the value of
|num_recs| will always be 0. This isn't obvious from the code so a comment
is added to explain it.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
The function ssl3_get_record() can obtain multiple records in one go
as long as we are set up for pipelining and all the records are app
data records. The logic in the while loop which reads in each record is
supposed to only continue looping if the last record we read was app data
and we have an app data record waiting in the buffer to be processed. It
was actually checking that the first record had app data and we have an
app data record waiting. This actually amounts to the same thing so wasn't
wrong - but it looks a bit odd because it uses the |rr| array without an
offset.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
Pipelining introduced the concept of multiple records being read in one
go. Therefore we work with an array of SSL3_RECORD objects. The pipelining
change erroneously made a change in ssl3_get_record() to apply the current
record offset to the SSL3_BUFFER we are using for reading. This is wrong -
there is only ever one read buffer. This reverts that change. In practice
this should make little difference because the code block in question is
only ever used when we are processing a single record.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
The numpipes argument to ssl3_enc/tls1_enc is actually the number of
records passed in the array. To make this clearer rename the argument to
|n_recs|.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Rename the have_whole_app_data_record_waiting() function to include the
ssl3_record prefix...and make it a bit shorter.
Reviewed-by: Tim Hudson <tjh@openssl.org>
With read pipelining we use multiple SSL3_RECORD structures for reading.
There are SSL_MAX_PIPELINES (32) of them defined (typically not all of these
would be used). Each one has a 16k compression buffer allocated! This
results in a significant amount of memory being consumed which, most of the
time, is not needed. This change swaps the allocation of the compression
buffer to be lazy so that it is only done immediately before it is actually
used.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Read pipelining is controlled in a slightly different way than with write
pipelining. While reading we are constrained by the number of records that
the peer (and the network) can provide to us in one go. The more records
we can get in one go the more opportunity we have to parallelise the
processing.
There are two parameters that affect this:
* The number of pipelines that we are willing to process in one go. This is
controlled by max_pipelines (as for write pipelining)
* The size of our read buffer. A subsequent commit will provide an API for
adjusting the size of the buffer.
Another requirement for this to work is that "read_ahead" must be set. The
read_ahead parameter will attempt to read as much data into our read buffer
as the network can provide. Without this set, data is read into the read
buffer on demand. Setting the max_pipelines parameter to a value greater
than 1 will automatically also turn read_ahead on.
Finally, the read pipelining as currently implemented will only parallelise
the processing of application data records. This would only make a
difference for renegotiation so is unlikely to have a significant impact.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Use the new pipeline cipher capability to encrypt multiple records being
written out all in one go. Two new SSL/SSL_CTX parameters can be used to
control how this works: max_pipelines and split_send_fragment.
max_pipelines defines the maximum number of pipelines that can ever be used
in one go for a single connection. It must always be less than or equal to
SSL_MAX_PIPELINES (currently defined to be 32). By default only one
pipeline will be used (i.e. normal non-parallel operation).
split_send_fragment defines how data is split up into pipelines. The number
of pipelines used will be determined by the amount of data provided to the
SSL_write call divided by split_send_fragment. For example if
split_send_fragment is set to 2000 and max_pipelines is 4 then:
SSL_write called with 0-2000 bytes == 1 pipeline used
SSL_write called with 2001-4000 bytes == 2 pipelines used
SSL_write called with 4001-6000 bytes == 3 pipelines used
SSL_write_called with 6001+ bytes == 4 pipelines used
split_send_fragment must always be less than or equal to max_send_fragment.
By default it is set to be equal to max_send_fragment. This will mean that
the same number of records will always be created as would have been
created in the non-parallel case, although the data will be apportioned
differently. In the parallel case data will be spread equally between the
pipelines.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Add -DBIO_DEBUG to --strict-warnings.
Remove comments about outdated debugging ifdef guards.
Remove md_rand ifdef guarding an assert; it doesn't seem used.
Remove the conf guards in conf_api since we use OPENSSL_assert, not assert.
For pkcs12 stuff put OPENSSL_ in front of the macro name.
Merge TLS_DEBUG into SSL_DEBUG.
Various things just turned on/off asserts, mainly for checking non-NULL
arguments, which is now removed: camellia, bn_ctx, crypto/modes.
Remove some old debug code, that basically just printed things to stderr:
DEBUG_PRINT_UNKNOWN_CIPHERSUITES, DEBUG_ZLIB, OPENSSL_RI_DEBUG,
RL_DEBUG, RSA_DEBUG, SCRYPT_DEBUG.
Remove OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL.
Reviewed-by: Richard Levitte <levitte@openssl.org>
This was done by the following
find . -name '*.[ch]' | /tmp/pl
where /tmp/pl is the following three-line script:
print unless $. == 1 && m@/\* .*\.[ch] \*/@;
close ARGV if eof; # Close file to reset $.
And then some hand-editing of other files.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
There are lots of calls to EVP functions from within libssl There were
various places where we should probably check the return value but don't.
This adds these checks.
Reviewed-by: Richard Levitte <levitte@openssl.org>
The SSL variable |in_handshake| seems misplaced. It would be better to have
it in the STATEM structure.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
The old implementation of DTLSv1_listen which has now been replaced still
had a few vestiges scattered throughout the code. This commit removes them.
Reviewed-by: Andy Polyakov <appro@openssl.org>
This is a workaround so old that nobody remembers what buggy clients
it was for. It's also been broken in stable branches for two years and
nobody noticed (see
https://boringssl-review.googlesource.com/#/c/1694/).
Reviewed-by: Tim Hudson <tjh@openssl.org>
If the record received is for a version that we don't support, previously we
were sending an alert back. However if the incoming record already looks
like an alert then probably we shouldn't do that. So suppress an outgoing
alert if it looks like we've got one incoming.
Reviewed-by: Kurt Roeckx <kurt@openssl.org>
The function RECORD_LAYER_clear() is supposed to clear the contents of the
RECORD_LAYER structure, but retain certain data such as buffers that are
allocated. Unfortunately one buffer (for compression) got missed and was
inadvertently being wiped, thus causing a memory leak.
In part this is due to the fact that RECORD_LAYER_clear() was reaching
inside SSL3_BUFFERs and SSL3_RECORDs, which it really shouldn't. So, I've
rewritten it to only clear the data it knows about, and to defer clearing
of SSL3_RECORD and SSL3_BUFFER structures to SSL_RECORD_clear() and the
new function SSL3_BUFFER_clear().
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Continuing from the previous commit this changes the way we do client side
version negotiation. Similarly all of the s23* "up front" state machine code
has been avoided and again things now work much the same way as they already
did for DTLS, i.e. we just do most of the work in the
ssl3_get_server_hello() function.
Reviewed-by: Kurt Roeckx <kurt@openssl.org>
This commit changes the way that we do server side protocol version
negotiation. Previously we had a whole set of code that had an "up front"
state machine dedicated to the negotiating the protocol version. This adds
significant complexity to the state machine. Historically the justification
for doing this was the support of SSLv2 which works quite differently to
SSLv3+. However, we have now removed support for SSLv2 so there is little
reason to maintain this complexity.
The one slight difficulty is that, although we no longer support SSLv2, we
do still support an SSLv3+ ClientHello in an SSLv2 backward compatible
ClientHello format. This is generally only used by legacy clients. This
commit adds support within the SSLv3 code for these legacy format
ClientHellos.
Server side version negotiation now works in much the same was as DTLS,
i.e. we introduce the concept of TLS_ANY_VERSION. If s->version is set to
that then when a ClientHello is received it will work out the most
appropriate version to respond with. Also, SSLv23_method and
SSLv23_server_method have been replaced with TLS_method and
TLS_server_method respectively. The old SSLv23* names still exist as
macros pointing at the new name, although they are deprecated.
Subsequent commits will look at client side version negotiation, as well of
removal of the old s23* code.
Reviewed-by: Kurt Roeckx <kurt@openssl.org>
There are header files in crypto/ that are used by the rest of
OpenSSL. Move those to include/internal and adapt the affected source
code, Makefiles and scripts.
The header files that got moved are:
crypto/constant_time_locl.h
crypto/o_dir.h
crypto/o_str.h
Reviewed-by: Matt Caswell <matt@openssl.org>
Remove RFC2712 Kerberos support from libssl. This code and the associated
standard is no longer considered fit-for-purpose.
Reviewed-by: Rich Salz <rsalz@openssl.org>
The various implementations of EVP_CTRL_AEAD_TLS_AAD expect a buffer of at
least 13 bytes long. Add sanity checks to ensure that the length is at
least that. Also add a new constant (EVP_AEAD_TLS1_AAD_LEN) to evp.h to
represent this length. Thanks to Kevin Wojtysiak (Int3 Solutions) and
Paramjot Oberoi (Int3 Solutions) for reporting this issue.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Replace the hard coded value 8 (the size of the sequence number) with a
constant defined in a macro.
Reviewed-by: Richard Levitte <levitte@openssl.org>
up some access to them. Now that various functions have been moved into the
record layer they no longer need to use the accessor macros.
Reviewed-by: Richard Levitte <levitte@openssl.org>