could be done automagically, much like the numbering in libeay.num and
ssleay.num. The solution works as follows:
- New object identifiers are inserted in objects.txt, following the
syntax given in objects.README.
- objects.pl is used to process obj_mac.num and create a new
obj_mac.h.
- obj_dat.pl is used to create a new obj_dat.h, using the data in
obj_mac.h.
This is currently kind of a hack, and the perl code in objects.pl
isn't very elegant, but it works as I intended. The simplest way to
check that it worked correctly is to look in obj_dat.h and check the
array nid_objs and make sure the objects haven't moved around (this is
important!). Additions are OK, as well as consistent name changes.
was a really bad idea. For example, the following:
#include <x509.h>
#include <bio.h>
#include <asn1.h>
would make sure that things like ASN1_UTCTIME_print() wasn't defined
unless you moved the inclusion of bio.h to above the inclusion of
x509.h. The reason is that x509.h includes asn1.h, and the
declaration of ASN1_UTCTIME_print() depended on the definition of
HEADER_BIO_H. That's what I call an obscure bug.
Instead, this change makes sure that whatever header files are needed
for the correct process of one header file are included automagically,
and that the definitions of, for example, BIO-related things are
dependent on the absence of the NO_{foo} macros. This is also
consistent with the way parts of OpenSSL can be excluded at will.
like Malloc, Realloc and especially Free conflict with already existing names
on some operating systems or other packages. That is reason enough to change
the names of the OpenSSL memory allocation macros to something that has a
better chance of being unique, like prepending them with OPENSSL_.
This change includes all the name changes needed throughout all C files.
"Jan Mikkelsen" <janm@transactionsite.com> correctly states that the
OpenSSL header files have #include's and extern "C"'s in an incorrect
order. Thusly fixed.
variety of platforms. A few are missing, and they will be added in
eventually, but as this is new stuff, it was better to not break lots of
platforms in one go that we can't easily test. The changes to "Configure"
should illustrate how to add support to other systems if you feel like
having a go.
NB: I'll add something shortly to allow you to add "dlfcn.h" support on
those platforms that don't have (or need) a dlfcn.h header file. (The
symbol for Configure will probably by "dlfcn_no_h").
Thanks to Richard Levitte, who is responsible for the dso_dl.c support,
understanding the trickier aspects of the build process, and giving great
feedback on everything else.
[Don't use this stuff if you're easily offended by changes to the
interface or behaviour - it's still work in progress.]
PR:
returns int (1 = ok, 0 = not seeded). New function RAND_add() is the
same as RAND_seed() but takes an estimate of the entropy as an additional
argument.
in cryptlib.h (which is often included as "../cryptlib.h"), then the
question remains relative to which directory this is to be interpreted.
gcc went one further directory up, as intended; but makedepend thinks
differently, and so probably do some C compilers. So the ../ must go away;
thus e_os.h goes back into include/openssl (but I now use
#include "openssl/e_os.h" instead of <openssl/e_os.h> to make the point) --
and we have another huge bunch of dependency changes. Argh.
There were problems with putting e_os.h just into the top directory,
because the test programs are compiled within test/ in the "standard"
case in in their original directories in the makefile.one case;
and in the latter symlinks may not be available.
script, translates function codes better and doesn't need the K&R function
prototypes to work (NB. the K&R prototypes can't be wiped just yet: they are
still needed by the DEF generator...). I also ran the script with the -rewrite
option to update all the header and source files.