The buffer to receive messages is initialised to 16k. If a message is
received that is larger than that then the buffer is "realloc'd". This can
cause the location of the underlying buffer to change. Anything that is
referring to the old location will be referring to free'd data. In the
recent commit c1ef7c97 (master) and 4b390b6c (1.1.0) the point in the code
where the message buffer is grown was changed. However s->init_msg was not
updated to point at the new location.
CVE-2016-6309
Reviewed-by: Emilia Käsper <emilia@openssl.org>
If we request more bytes to be allocated than double what we have already
written, then we grow the buffer by the wrong amount.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
We actually construct a HelloVerifyRequest in two places with common code
pulled into a single function. This one commit handles both places.
Reviewed-by: Rich Salz <rsalz@openssl.org>
If the underlying BUF_MEM gets realloc'd then the pointer returned could
become invalid. Therefore we should always ensure that the allocated
memory is filled in prior to any more WPACKET_* calls.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Russian GOST ciphersuites are vulnerable to the KCI attack because they use
long-term keys to establish the connection when ssl client authorization is
on. This change brings the GOST implementation into line with the latest
specs in order to avoid the attack. It should not break backwards
compatibility.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
If while calling SSL_peek() we read an empty record then we go into an
infinite loop, continually trying to read data from the empty record and
never making any progress. This could be exploited by a malicious peer in
a Denial Of Service attack.
CVE-2016-6305
GitHub Issue #1563
Reviewed-by: Rich Salz <rsalz@openssl.org>
If a server sent multiple NPN extensions in a single ClientHello then a
mem leak can occur. This will only happen where the client has requested
NPN in the first place. It does not occur during renegotiation. Therefore
the maximum that could be leaked in a single connection with a malicious
server is 64k (the maximum size of the ServerHello extensions section). As
this is client side, only occurs if NPN has been requested and does not
occur during renegotiation this is unlikely to be exploitable.
Issue reported by Shi Lei.
Reviewed-by: Rich Salz <rsalz@openssl.org>
A malicious client can send an excessively large OCSP Status Request
extension. If that client continually requests renegotiation,
sending a large OCSP Status Request extension each time, then there will
be unbounded memory growth on the server. This will eventually lead to a
Denial Of Service attack through memory exhaustion. Servers with a
default configuration are vulnerable even if they do not support OCSP.
Builds using the "no-ocsp" build time option are not affected.
I have also checked other extensions to see if they suffer from a similar
problem but I could not find any other issues.
CVE-2016-6304
Issue reported by Shi Lei.
Reviewed-by: Rich Salz <rsalz@openssl.org>
This issue is very similar to CVE-2016-6307 described in the previous
commit. The underlying defect is different but the security analysis and
impacts are the same except that it impacts DTLS.
A DTLS message includes 3 bytes for its length in the header for the
message.
This would allow for messages up to 16Mb in length. Messages of this length
are excessive and OpenSSL includes a check to ensure that a peer is sending
reasonably sized messages in order to avoid too much memory being consumed
to service a connection. A flaw in the logic of version 1.1.0 means that
memory for the message is allocated too early, prior to the excessive
message length check. Due to way memory is allocated in OpenSSL this could
mean an attacker could force up to 21Mb to be allocated to service a
connection. This could lead to a Denial of Service through memory
exhaustion. However, the excessive message length check still takes place,
and this would cause the connection to immediately fail. Assuming that the
application calls SSL_free() on the failed conneciton in a timely manner
then the 21Mb of allocated memory will then be immediately freed again.
Therefore the excessive memory allocation will be transitory in nature.
This then means that there is only a security impact if:
1) The application does not call SSL_free() in a timely manner in the
event that the connection fails
or
2) The application is working in a constrained environment where there
is very little free memory
or
3) The attacker initiates multiple connection attempts such that there
are multiple connections in a state where memory has been allocated for
the connection; SSL_free() has not yet been called; and there is
insufficient memory to service the multiple requests.
Except in the instance of (1) above any Denial Of Service is likely to
be transitory because as soon as the connection fails the memory is
subsequently freed again in the SSL_free() call. However there is an
increased risk during this period of application crashes due to the lack
of memory - which would then mean a more serious Denial of Service.
This issue does not affect TLS users.
Issue was reported by Shi Lei (Gear Team, Qihoo 360 Inc.).
CVE-2016-6308
Reviewed-by: Richard Levitte <levitte@openssl.org>
A TLS message includes 3 bytes for its length in the header for the message.
This would allow for messages up to 16Mb in length. Messages of this length
are excessive and OpenSSL includes a check to ensure that a peer is sending
reasonably sized messages in order to avoid too much memory being consumed
to service a connection. A flaw in the logic of version 1.1.0 means that
memory for the message is allocated too early, prior to the excessive
message length check. Due to way memory is allocated in OpenSSL this could
mean an attacker could force up to 21Mb to be allocated to service a
connection. This could lead to a Denial of Service through memory
exhaustion. However, the excessive message length check still takes place,
and this would cause the connection to immediately fail. Assuming that the
application calls SSL_free() on the failed conneciton in a timely manner
then the 21Mb of allocated memory will then be immediately freed again.
Therefore the excessive memory allocation will be transitory in nature.
This then means that there is only a security impact if:
1) The application does not call SSL_free() in a timely manner in the
event that the connection fails
or
2) The application is working in a constrained environment where there
is very little free memory
or
3) The attacker initiates multiple connection attempts such that there
are multiple connections in a state where memory has been allocated for
the connection; SSL_free() has not yet been called; and there is
insufficient memory to service the multiple requests.
Except in the instance of (1) above any Denial Of Service is likely to
be transitory because as soon as the connection fails the memory is
subsequently freed again in the SSL_free() call. However there is an
increased risk during this period of application crashes due to the lack
of memory - which would then mean a more serious Denial of Service.
This issue does not affect DTLS users.
Issue was reported by Shi Lei (Gear Team, Qihoo 360 Inc.).
CVE-2016-6307
Reviewed-by: Richard Levitte <levitte@openssl.org>
Certain warning alerts are ignored if they are received. This can mean that
no progress will be made if one peer continually sends those warning alerts.
Implement a count so that we abort the connection if we receive too many.
Issue reported by Shi Lei.
Reviewed-by: Rich Salz <rsalz@openssl.org>
All the other functions that take an argument for the number of bytes
use convenience macros for this purpose. We should do the same with
WPACKET_put_bytes().
Reviewed-by: Rich Salz <rsalz@openssl.org>
Makes the logic a little bit clearer.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/1571)
This reverts commit 77a6be4dfc.
There were some unexpected side effects to this commit, e.g. in SSLv3 a
warning alert gets sent "no_certificate" if a client does not send a
Certificate during Client Auth. With the above commit this causes the
connection to abort, which is incorrect. There may be some other edge cases
like this so we need to have a rethink on this.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Updated the construction code to use the new function. Also added some
convenience macros for WPACKET_sub_memcpy().
Reviewed-by: Rich Salz <rsalz@openssl.org>
A peer continually sending unrecognised warning alerts could mean that we
make no progress on a connection. We should abort rather than continuing if
we receive an unrecognised warning alert.
Thanks to Shi Lei for reporting this issue.
Reviewed-by: Rich Salz <rsalz@openssl.org>
This is an internal API. Some of the tests were for programmer erorr and
"should not happen" situations, so a soft assert is reasonable.
Reviewed-by: Rich Salz <rsalz@openssl.org>
A few style tweaks here and there. The main change is that curr and
packet_len are now offsets into the buffer to account for the fact that
the pointers can change if the buffer grows. Also dropped support for the
WPACKET_set_packet_len() function. I thought that was going to be needed
but so far it hasn't been. It doesn't really work any more due to the
offsets change.
Reviewed-by: Rich Salz <rsalz@openssl.org>
The PACKET documentation is already in packet_locl.h so it makes sense to
have the WPACKET documentation there as well.
Reviewed-by: Rich Salz <rsalz@openssl.org>
The function tls_construct_cert_status() is called by both TLS and DTLS
code. However it only ever constructed a TLS message header for the message
which obviously failed in DTLS.
Reviewed-by: Rich Salz <rsalz@openssl.org>