ENGINE handler functions should take the ENGINE structure as a parameter -
this is because ENGINE structures can be copied, and like other
structure/method setups in OpenSSL, it should be possible for init(),
finish(), ctrl(), etc to adjust state inside the ENGINE structures rather
than globally. This commit includes the dependant changes in the ENGINE
implementations.
Previous changes permanently removed the commented-out old code for where
it was possible to create and use an ENGINE statically, and this code gets
rid of the ENGINE_FLAGS_MALLOCED flag that supported the distinction with
dynamically allocated ENGINEs. It also moves the area for ENGINE_FLAGS_***
values from engine_int.h to engine.h - because it should be possible to
declare ENGINEs just from declarations in exported headers.
* Constify the get/set functions, and add some that functions were missing.
* Add a new 'ENGINE_cpy()' function that will produce a new ENGINE based
copied from an original (except for the references, ie. the new copy will
be like an ENGINE returned from 'ENGINE_new()' - a structural reference).
* Removed the "null parameter" checking in the get/set functions - it is
legitimate to set NULL values as a way of *changing* an ENGINE (ie.
removing a handler that previously existed). Also, passing a NULL pointer
for an ENGINE is obviously wrong for these functions, so don't bother
checking for it. The result is a number of error codes and strings could
be removed.
without releasing a lock. This is the same fix as applied to
OpenSSL-engine-0_9_6-stable, minus the ENGINE_ctrl() change - the HEAD
already had that fixed.
and make all files the depend on it include it without prefixing it
with openssl/.
This means that all Makefiles will have $(TOP) as one of the include
directories.
sure they are available in opensslconf.h, by giving them names starting
with "OPENSSL_" to avoid conflicts with other packages and by making
sure e_os2.h will cover all platform-specific cases together with
opensslconf.h.
I've checked fairly well that nothing breaks with this (apart from
external software that will adapt if they have used something like
NO_KRB5), but I can't guarantee it completely, so a review of this
change would be a good thing.
BCM5805 and BCM5820 units. So far I've merely taken a skim over the code
and changed a few things from their original contributed source
(de-shadowing variables, removing variables from the header, and
re-constifying some functions to remove warnings). If this gives
compilation problems on any system, please let me know. We will hopefully
know for sure whether this actually functions on a system with the relevant
hardware in a day or two. :-)
situation where they've initialised the ENGINE, loaded keys (which are then
linked to that ENGINE), and performed other checks (such as verifying
certificate chains etc). At that point, if the application goes
multi-threaded or multi-process it creates problems for any ENGINE
implementations that are either not thread/process safe or that perform
optimally when they do not have to perform locking and other contention
management tasks at "run-time".
This defines a new ENGINE_ctrl() command that can be supported by engines
at their discretion. If ENGINE_ctrl(..., ENGINE_CTRL_HUP,...) returns an
error then the caller should check if the *_R_COMMAND_NOT_IMPLEMENTED error
reason was set - it may just be that the engine doesn't support or need the
HUP command, or it could be that the attempted reinitialisation failed. A
crude alternative is to ignore the return value from ENGINE_ctrl() (and
clear any errors with ERR_clear_error()) and perform a test operation
immediately after the "HUP". Very crude indeed.
ENGINEs can support this command to close and reopen connections, files,
handles, or whatever as an alternative to run-time locking when such things
would otherwise be needed. In such a case, it's advisable for the engine
implementations to support locking by default but disable it after the
arrival of a HUP command, or any other indication by the application that
locking is not required. NB: This command exists to allow an ENGINE to
reinitialise without the ENGINE's functional reference count having to sink
down to zero and back up - which is what is normally required for the
finish() and init() handlers to get invoked. It would also be a bad idea
for engine_lib to catch this command itself and interpret it by calling the
engine's init() and finish() handlers directly, because reinitialisation
may need special handling on a case-by-case basis that is distinct from a
finish/init pair - eg. calling a finish() handler may invalidate the state
stored inside individual keys that have already loaded for this engine.
load the "external" built-in engines (those that require DSO). This
makes linking with libdl or other dso libraries non-mandatory.
Change 'openssl engine' accordingly.
Change the engine header files so some declarations (that differed at
that!) aren't duplicated, and make sure engine_int.h includes
engine.h. That way, there should be no way of missing the needed
info.