In the probable_prime() function we behave slightly different if the number
of bits we are interested in is <= BN_BITS2 (the num of bits in a BN_ULONG).
As part of the calculation we work out a size_limit as follows:
size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1;
There is a problem though if bits == BN_BITS2. Shifting by that much causes
undefined behaviour. I did some tests. On my system BN_BITS2 == 64. So I
set bits to 64 and calculated the result of:
(((BN_ULONG)1) << bits)
I was expecting to get the result 0. I actually got 1! Strangely this...
(((BN_ULONG)0) << BN_BITS2)
...does equal 0! This means that, on my system at least, size_limit will be
off by 1 when bits == BN_BITS2.
This commit fixes the behaviour so that we always get consistent results.
Reviewed-by: Andy Polyakov <appro@openssl.org>
requested size. Fixes OpenSSL #2701.
This change does not address the cases of generating safe primes, or
where the |add| parameter is non-NULL.
Conflicts:
crypto/bn/bn.h
crypto/bn/bn_err.c
locally initialising their own.
NB: I've removed the "BN_clear_free()" loops for the exit-paths in some of
these functions, and that may be a major part of the performance
improvements we're seeing. The "free" part can be removed because we're
using BN_CTX. The "clear" part OTOH can be removed because BN_CTX
destruction automatically performs this task, so performing it inside
functions that may be called repeatedly is wasteful. This is currently safe
within openssl due to the fact that BN_CTX objects are never created for
longer than a single high-level operation. However, that is only because
there's currently no mechanism in openssl for thread-local storage. Beyond
that, this might be an issue for applications using the bignum API directly
and caching their own BN_CTX objects. The solution is to introduce a flag
to BN_CTX_start() that allows its variables to be automatically sanitised
on release during BN_CTX_end(). This way any higher-level function (and
perhaps the application) can specify this flag in its own
BN_CTX_start()/BN_CTX_end() pair, and this will cause inner-loop functions
specifying the flag to be ignored so that sanitisation is handled only once
back out at the higher level. I will be implementing this in the near
future.
- a patch to fix a memory leak in rsa_gen.c
- a note about compiler warnings with unions
- a note about improving structure element names
This applies his patch and implements a solution to the notes.
key-generation and prime-checking functions. Rather than explicitly passing
callback functions and caller-defined context data for the callbacks, a new
structure BN_GENCB is defined that encapsulates this; a pointer to the
structure is passed to all such functions instead.
This wrapper structure allows the encapsulation of "old" and "new" style
callbacks - "new" callbacks return a boolean result on the understanding
that returning FALSE should terminate keygen/primality processing. The
BN_GENCB abstraction will allow future callback modifications without
needing to break binary compatibility nor change the API function
prototypes. The new API functions have been given names ending in "_ex" and
the old functions are implemented as wrappers to the new ones. The
OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined,
declaration of the older functions will be skipped. NB: Some
openssl-internal code will stick with the older callbacks for now, so
appropriate "#undef" logic will be put in place - this is in case the user
is *building* openssl (rather than *including* its headers) with this
symbol defined.
There is another change in the new _ex functions; the key-generation
functions do not return key structures but operate on structures passed by
the caller, the return value is a boolean. This will allow for a smoother
transition to having key-generation as "virtual function" in the various
***_METHOD tables.
two functions that did expansion on in parameters (BN_mul() and
BN_sqr()). The problem was solved by making bn_dup_expand() which is
a mix of bn_expand2() and BN_dup().
returns int (1 = ok, 0 = not seeded). New function RAND_add() is the
same as RAND_seed() but takes an estimate of the entropy as an additional
argument.