Hardware used for benchmarking courtesy of Atos, experiments run by
Romain Dolbeau <romain.dolbeau@atos.net>. Kudos!
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4855)
Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
executed even on Knights Landing. Trigger for modification was
observation that AVX512 code paths can negatively affect overall
Skylake-X system performance. Since we are likely to suppress
AVX512F capability flag [at least on Skylake-X], conversion serves
as kind of "investment protection".
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4758)
Around 138 distinct errors found and fixed; thanks!
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3459)
"Optimize" is in quotes because it's rather a "salvage operation"
for now. Idea is to identify processor capability flags that
drive Knights Landing to suboptimial code paths and mask them.
Two flags were identified, XSAVE and ADCX/ADOX. Former affects
choice of AES-NI code path specific for Silvermont (Knights Landing
is of Silvermont "ancestry"). And 64-bit ADCX/ADOX instructions are
effectively mishandled at decode time. In both cases we are looking
at ~2x improvement.
AVX-512 results cover even Skylake-X :-)
Hardware used for benchmarking courtesy of Atos, experiments run by
Romain Dolbeau <romain.dolbeau@atos.net>. Kudos!
Reviewed-by: Rich Salz <rsalz@openssl.org>
The assembler already knows the actual path to the generated file and,
in other perlasm architectures, is left to manage debug symbols itself.
Notably, in OpenSSL 1.1.x's new build system, which allows a separate
build directory, converting .pl to .s as the scripts currently do result
in the wrong paths.
This also avoids inconsistencies from some of the files using $0 and
some passing in the filename.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3431)
As hinted by its name new subroutine processes 8 input blocks in
parallel by loading data to 512-bit registers. It still needs more
work, as it needs to handle some specific input lengths better.
In this sense it's yet another intermediate step...
Reviewed-by: Rich Salz <rsalz@openssl.org>
As hinted by its name new subroutine processes 4 input blocks in
parallel. It still operates on 256-bit registers and is just
another step toward full-blown AVX512IFMA procedure.
Reviewed-by: Rich Salz <rsalz@openssl.org>
On pre-Skylake best optimization strategy was balancing port-specific
instructions, while on Skylake minimizing the sheer amount appears
more sensible.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Add Poly1305 as a "signed" digest.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/2128)
Now that we can link specifically with static libraries, the immediate
need to split ppccap.c (and eventually other *cap.c files) is no more.
This reverts commit e3fb4d3d52.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Having that code in one central object file turned out to cause
trouble when building test/modes_internal_test.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/1883)
MIPS[32|64]R6 is binary and source incompatible with previous MIPS ISA
specifications. Fortunately it's still possible to resolve differences
in source code with standard pre-processor and switching to trap-free
version of addition and subtraction instructions.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Even though no test could be found to trigger this, paper-n-pencil
estimate suggests that x86 and ARM inner loop lazy reductions can
loose a bit in H4>>*5+H0 step.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
The Unix build was the last to retain the classic build scheme. The
new unified scheme has matured enough, even though some details may
need polishing.
Reviewed-by: Rich Salz <rsalz@openssl.org>