client hello message. Previously this could only be retrieved on an initial
connection and it was impossible to determine the cipher IDs of any uknown
ciphersuites.
some invalid operations for testing purposes. Currently this can be used
to sign using digests the peer doesn't support, EC curves the peer
doesn't support and use certificates which don't match the type associated
with a ciphersuite.
by a certificate chain. Add additional tests to handle client
certificates: checks for matching certificate type and issuer name
comparison.
Print out results of checks for each candidate chain tested in
s_server/s_client.
is required by client or server. An application can decide which
certificate chain to present based on arbitrary criteria: for example
supported signature algorithms. Add very simple example to s_server.
This fixes many of the problems and restrictions of the existing client
certificate callback: for example you can now clear existing certificates
and specify the whole chain.
the certificate can be used for (if anything). Set valid_flags field
in new tls1_check_chain function. Simplify ssl_set_cert_masks which used
to have similar checks in it.
Add new "cert_flags" field to CERT structure and include a "strict mode".
This enforces some TLS certificate requirements (such as only permitting
certificate signature algorithms contained in the supported algorithms
extension) which some implementations ignore: this option should be used
with caution as it could cause interoperability issues.
enabled instead of requiring an application to hard code a (possibly
inappropriate) parameter set and delve into EC internals we just
automatically use the preferred curve.
Tidy some code up.
Don't allocate a structure to handle ECC extensions when it is used for
default values.
Make supported curves configurable.
Add ctrls to retrieve shared curves: not fully integrated with rest of
ECC code yet.
certificate chain instead of an X509 structure.
This makes it easier to enhance code in future and the chain
output functions have access to the CERT_PKEY structure being
used.
The cipher definitions of these ciphersuites have been around since SSLeay
but were always disabled. Now OpenSSL supports DH certificates they can be
finally enabled.
Various additional changes were needed to make them work properly: many
unused fixed DH sections of code were untested.
using OBJ xref utilities instead of string comparison with OID name.
This removes the arbitrary restriction on using SHA1 only with some ECC
ciphersuites.
algorithms extension (including everything we support). Swicth to new
signature format where needed and relax ECC restrictions.
Not TLS v1.2 client certifcate support yet but client will handle case
where a certificate is requested and we don't have one.
signature algorithms extension and correct signature format for
server key exchange.
All ciphersuites should now work on the server but no client support and
no client certificate support yet.
checking added, SHA256 PRF support added.
At present only RSA key exchange ciphersuites work with TLS v1.2 as the
new signature format is not yet implemented.
OPENSSL_NO_SSL_INTERN all ssl related structures are opaque
and internals cannot be directly accessed. Many applications
will need some modification to support this and most likely some
additional functions added to OpenSSL.
The advantage of this option is that any application supporting
it will still be binary compatible if SSL structures change.
SSL_[CTX_]set_not_resumable_session_callback.
Submitted by: Emilia Kasper (Google)
[A part of this change affecting ssl/s3_lib.c was accidentally commited
separately, together with a compilation fix for that file;
see s3_lib.c CVS revision 1.133 (http://cvs.openssl.org/chngview?cn=19855).]