Fixes#4403
This commit moves the internal header file "internal/rand.h" to
<openssl/rand_drbg.h>, making the RAND_DRBG API public.
The RAND_POOL API remains private, its function prototypes were
moved to "internal/rand_int.h" and converted to lowercase.
Documentation for the new API is work in progress on GitHub #5461.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5462)
The introduction of thread local public and private DRBG instances (#5547)
makes it very cumbersome to change the reseeding (time) intervals for
those instances. This commit provides a function to set the default
values for all subsequently created DRBG instances.
int RAND_DRBG_set_reseed_defaults(
unsigned int master_reseed_interval,
unsigned int slave_reseed_interval,
time_t master_reseed_time_interval,
time_t slave_reseed_time_interval
);
The function is intended only to be used during application initialization,
before any threads are created and before any random bytes are generated.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5576)
The NIST standard presents two alternative ways for seeding the
CTR DRBG, depending on whether a derivation function is used or not.
In Section 10.2.1 of NIST SP800-90Ar1 the following is assessed:
The use of the derivation function is optional if either an
approved RBG or an entropy source provides full entropy output
when entropy input is requested by the DRBG mechanism.
Otherwise, the derivation function shall be used.
Since the OpenSSL DRBG supports being reseeded from low entropy random
sources (using RAND_POOL), the use of a derivation function is mandatory.
For that reason we change the default and replace the opt-in flag
RAND_DRBG_FLAG_CTR_USE_DF with an opt-out flag RAND_DRBG_FLAG_CTR_NO_DF.
This change simplifies the RAND_DRBG_new() calls.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5294)
The DRGB concept described in NIST SP 800-90A provides for having different
algorithms to generate random output. In fact, the FIPS object module used to
implement three of them, CTR DRBG, HASH DRBG and HMAC DRBG.
When the FIPS code was ported to master in #4019, two of the three algorithms
were dropped, and together with those the entire code that made RAND_DRBG
generic was removed, since only one concrete implementation was left.
This commit restores the original generic implementation of the DRBG, making it
possible again to add additional implementations using different algorithms
(like RAND_DRBG_CHACHA20) in the future.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4998)
The generic part of the FIPS DRBG was implemented in fips_drbg_lib.c and the
algorithm specific parts in fips_drbg_<alg>.c for <alg> in {ctr, hash, hmac}.
Additionally, there was the module fips_drbg_rand.c which contained 'gluing'
code between the RAND_METHOD api and the FIPS DRBG.
When the FIPS code was ported to master in #4019, for some reason the ctr-drbg
implementation from fips_drbg_ctr.c ended up in drbg_rand.c instead of drbg_ctr.c.
This commit renames the module drbg_rand.c back to drbg_ctr.c, thereby restoring
a simple relationship between the original fips modules and the drbg modules
in master:
fips_drbg_lib.c => drbg_lib.c /* generic part of implementation */
fips_drbg_<alg>.c => drbg_<alg>.c /* algorithm specific implementations */
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4998)