The NIST standard presents two alternative ways for seeding the
CTR DRBG, depending on whether a derivation function is used or not.
In Section 10.2.1 of NIST SP800-90Ar1 the following is assessed:
The use of the derivation function is optional if either an
approved RBG or an entropy source provides full entropy output
when entropy input is requested by the DRBG mechanism.
Otherwise, the derivation function shall be used.
Since the OpenSSL DRBG supports being reseeded from low entropy random
sources (using RAND_POOL), the use of a derivation function is mandatory.
For that reason we change the default and replace the opt-in flag
RAND_DRBG_FLAG_CTR_USE_DF with an opt-out flag RAND_DRBG_FLAG_CTR_NO_DF.
This change simplifies the RAND_DRBG_new() calls.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5294)
The no-tls1_2 option does not work properly in conjunction with TLSv1.3
being enabled (which is now the default). This commit fixes the issues.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5301)
tls13encryptiontest is an "internal" test. As with all the other internal
tests it should not be run on a shared native Windows build.
[extended tests]
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5266)
If TLSv1.3 is enabled and combined with other options that extend the
size of the ClientHello, then the clienthello test can sometimes fail
because the ClientHello has grown too large. Part of the purpose of the
test is to check that the padding extension works properly. This requires
the ClientHello size to be kept within certain bounds.
By restricting the number of ciphersuites sent we can reduce the size of
the ClientHello.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5266)
It turns out that even if you successfully build the engine, it might
not load properly, so we cannot make the test program fail for it.
See the message in commit 25b9d11c00
This reverts commit 227a1e3f45.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5276)
The afalg engine was moved down from engines/afalg/ to engines/, but
the test wasn't changed accordingly. This was undetected because the
test program didn't fail when it couldn't load the engine.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5270)
If you know that there's no afalg engine, don't run this test.
test/recipes/30-test_afalg.t checks this correctly.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5270)
Add SSL_verify_client_post_handshake() for servers to initiate PHA
Add SSL_force_post_handshake_auth() for clients that don't have certificates
initially configured, but use a certificate callback.
Update SSL_CTX_set_verify()/SSL_set_verify() mode:
* Add SSL_VERIFY_POST_HANDSHAKE to postpone client authentication until after
the initial handshake.
* Update SSL_VERIFY_CLIENT_ONCE now only sends out one CertRequest regardless
of when the certificate authentication takes place; either initial handshake,
re-negotiation, or post-handshake authentication.
Add 'RequestPostHandshake' and 'RequirePostHandshake' SSL_CONF options that
add the SSL_VERIFY_POST_HANDSHAKE to the 'Request' and 'Require' options
Add support to s_client:
* Enabled automatically when cert is configured
* Can be forced enabled via -force_pha
Add support to s_server:
* Use 'c' to invoke PHA in s_server
* Remove some dead code
Update documentation
Update unit tests:
* Illegal use of PHA extension
* TLSv1.3 certificate tests
DTLS and TLS behave ever-so-slightly differently. So, when DTLS1.3 is
implemented, it's PHA support state machine may need to be different.
Add a TODO and a #error
Update handshake context to deal with PHA.
The handshake context for TLSv1.3 post-handshake auth is up through the
ClientFinish message, plus the CertificateRequest message. Subsequent
Certificate, CertificateVerify, and Finish messages are based on this
handshake context (not the Certificate message per se, but it's included
after the hash). KeyUpdate, NewSessionTicket, and prior Certificate
Request messages are not included in post-handshake authentication.
After the ClientFinished message is processed, save off the digest state
for future post-handshake authentication. When post-handshake auth occurs,
copy over the saved handshake context into the "main" handshake digest.
This effectively discards the any KeyUpdate or NewSessionTicket messages
and any prior post-handshake authentication.
This, of course, assumes that the ID-22 did not mean to include any
previous post-handshake authentication into the new handshake transcript.
This is implied by section 4.4.1 that lists messages only up to the
first ClientFinished.
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4964)
This avoids having to enumerate specific modules in apps, or to have
to include them in libtestutil.a.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5222)
The rehash test broke the test if run by root. Instead, just skip the
check that requires non-root to be worth it.
Fixes#4387
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5184)
Make the sigalg name in comments reflect one that actually exists
in the draft standard.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5174)
We don't need to send this extension in normal operation since
we are our own X.509 library, but add some test cases that force
the extension to be sent and exercise our code to process the extension.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5068)
We now have a split in the signature algorithms codepoint space for
whether the certificate's key is for rsaEncryption or a PSS-specific
key, which should let us get rid of some special-casing that we
previously needed to try to coax rsaEncryption keys into performing PSS.
(This will be done in a subsequent commit.)
Send the new PSS-with-PSS-specific key first in our list, so that
we prefer the new technology to the old one.
We need to update the expected certificate type in one test,
since the "RSA-PSS+SHA256" form now corresponds to a public key
of type rsaEncryption, so we should expect the server certificate
type to be just "RSA". If we want to get a server certificate
type of "RSA-PSS", we need to use a new signature algorithm
that cannot be represented as signature+hash, so add a test for that
as well.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5068)
Support added for these two digests, available only via the EVP interface.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5093)
That inclusion turned out to be completely unnecessary
[extended tests]
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5136)
This includes unnecessary use of the top as inclusion directory
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5132)
The DRGB concept described in NIST SP 800-90A provides for having different
algorithms to generate random output. In fact, the FIPS object module used to
implement three of them, CTR DRBG, HASH DRBG and HMAC DRBG.
When the FIPS code was ported to master in #4019, two of the three algorithms
were dropped, and together with those the entire code that made RAND_DRBG
generic was removed, since only one concrete implementation was left.
This commit restores the original generic implementation of the DRBG, making it
possible again to add additional implementations using different algorithms
(like RAND_DRBG_CHACHA20) in the future.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4998)
Add a regression test for the functionality enabled in the
previous commit.
[extended tests]
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4463)
Similar to commit 17b602802114d53017ff7894319498934a580b17(
"Remove extra `the` in SSL_SESSION_set1_id.pod"), this commit removes
typos where additional 'the' have been added.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4999)
Every DRBG now supports automatic reseeding not only after a given
number of generate requests, but also after a specified time interval.
Signed-off-by: Dr. Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/4402)
A third shared DRBG is added, the so called master DRBG. Its sole purpose
is to reseed the two other shared DRBGs, the public and the private DRBG.
The randomness for the master DRBG is either pulled from the os entropy
sources, or added by the application using the RAND_add() call.
The master DRBG reseeds itself automatically after a given number of generate
requests, but can also be reseeded using RAND_seed() or RAND_add().
A reseeding of the master DRBG is automatically propagated to the public
and private DRBG. This construction fixes the problem, that up to now
the randomness provided by RAND_add() was added only to the public and
not to the private DRBG.
Signed-off-by: Dr. Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/4402)
The new ServerHello format is essentially now the same as the old TLSv1.2
one, but it must additionally include supported_versions. The version
field is fixed at TLSv1.2, and the version negotiation happens solely via
supported_versions.
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/4701)
As per documentation, the RSA keys should not be smaller than 64bit (the
documentation mentions something about a quirk in the prime generation
algorithm). I am adding check into the code which used to be 16 for some
reason.
My primary motivation is to get rid of the last sentence in the
documentation which suggest that typical keys have 1024 bits (instead
updating it to the now default 2048).
I *assume* that keys less than the 2048 bits (say 512) are used for
education purposes.
The 512 bits as the minimum have been suggested by Bernd Edlinger.
Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4547)