Setting the SipHash hash size and setting its key is done with two
independent functions... and yet, the internals depend on both.
Unfortunately, the function to change the size wasn't adapted for the
possibility that the key was set first, with a different hash size.
This changes the hash setting function to fix the internal values
(which is easy, fortunately) according to the hash size.
evpmac.txt value for digestsize:8 is also corrected.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7613)
(cherry picked from commit 425036130d)
pkey_test_ctrl() was designed for parsing values, not for using in
test runs. Relying on its returned value when it returned 1 even for
control errors made it particularly useless for mac_test_run().
Here, it gets replaced with a MAC specific control function, that
parses values the same way but is designed for use in a _run() rather
than a _parse() function.
This uncovers a SipHash test with an invalid control that wasn't
caught properly. After all, that stanza is supposed to test that
invalid control values do generate an error. Now we catch that.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7500)
(cherry picked from commit ce5d64c79c)
Added NIST test cases for these two as well.
Additionally deprecate the public definiton of HMAC_MAX_MD_CBLOCK in 1.2.0.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6972)
The EFD database does not state that the "ladd-2002-it-3" algorithm
assumes X1 != 0.
Consequently the current implementation, based on it, fails to compute
correctly if the affine x coordinate of the scalar multiplication input
point is 0.
We replace this implementation using the alternative algorithm based on
Eq. (9) and (10) from the same paper, which being derived from the
additive relation of (6) does not incur in this problem, but costs one
extra field multiplication.
The EFD entry for this algorithm is at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
and the code to implement it was generated with tooling.
Regression tests add one positive test for each named curve that has
such a point. The `SharedSecret` was generated independently from the
OpenSSL codebase with sage.
This bug was originally reported by Dmitry Belyavsky on the
openssl-users maling list:
https://mta.openssl.org/pipermail/openssl-users/2018-August/008540.html
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7000)
1. For every named curve, two "golden" keypair positive tests.
2. Also two "golden" stock ECDH positive tests.
3. For named curves with non-trivial cofactors, additionally two "golden"
ECC CDH positive tests.
4. For named curves with non-trivial cofactors, additionally two negative
tests.
There is some overlap with existing EVP tests, especially for the NIST
curves (for example, positive testing ECC CDH KATs for NIST curves).
"Golden" here means all the values are independent from OpenSSL's ECC
code. I used sage to calculate them. What comes from OpenSSL is:
1. The OIDs (parsed by tooling)
2. The curve parameters (parsing ecparam output with tooling)
The values inside the PEMs (private keys, public keys) and shared keys
are from sage. The PEMs themselves are the output of asn1parse, with
input taken from sage.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6608)
Use EVP_PKEY_set_alias_type to access
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6443)
The actual functionality of generating signatures through the `EVP_PKEY`
API is completely untested.
Current tests under the `EVP_PKEY` API
(`test/recipes/30-test_evp_data/evppkey.txt`) only cover `Verify` and
`Decrypt`, while encryption and signature generation are tested with
ad-hoc clients (`test/sm2crypttest.c`, `test/sm2signtest.c`) that do not
call the `EVP_PKEY` interface at all but soon-to-be private functions
that bypass it (cf. PR#5895 ).
It is my opinion that an ideal solution for the future would consist on
enhancing the `test/evp_pkey` facility and syntax to allow tests to take
control of the PRNG to inject known nonces and validate the results of
`EVP_PKEY` implementations against deterministic known answer tests, but
it is probably too late to work on this feature in time for next release.
Given that commit b5a85f70d8 highlights some critical bugs in the hook
between the `EVP_PKEY` interface and SM2 signature generation and that
these defects escaped testing and code review, I think that at least for
now it is beneficial to at least add the kind of "bogus" testing
provided by this patch:
this is a "fake" test as it does only verify that the SM2 `EVP_PKEY`
interface is capable of creating a signature without failing, but it
does not say anything about the generated signature being valid, nor
does it test the functional correctness of the cryptosystem.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6066)
Raw private/public key loading may fail for X25519/X448 if ec has been
disabled.
Also fixed a missing blank line in evppkey.txt resulting in a warning in
the test output.
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5664)
This adds the Ed448 test vectors from RFC8032 and the X448 test vectors
from RFC7748.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5481)
Support added for these two digests, available only via the EVP interface.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5093)
SM3 is a secure hash function which is part of the Chinese
"Commercial Cryptography" suite of algorithms which use is
required for certain commercial applications in China.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4616)
Add an interface that allows accessing the scrypt KDF as a PKEY_METHOD.
This fixes#4021 (at least for the scrypt portion of the issue).
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Stephen Henson <steve@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4026)