in "types.h" so that very few headers will need to include engine.h,
generally only C files using API functions will need it (reducing
the header dependencies quite a lot).
distinction (which does not work well because if CRYPTO_MDEBUG is
defined at library compile time, it is not necessarily defined at
application compile time; and memory debugging now can be reconfigured
at run-time anyway). To get the intended semantics, we could just use
the EVP_DigestInit_dbg unconditionally (which uses the caller's
__FILE__ and __LINE__ for memory leak debugging), but this would make
memory debugging inconsistent. Instead, callers can use
CRYPTO_push_info() to track down memory leaks.
distinction (which does not work well because if CRYPTO_MDEBUG is
defined at library compile time, it is not necessarily defined at
application compile time; and memory debugging now can be reconfigured
at run-time anyway). To get the intended semantics, we could just use
the EVP_DigestInit_dbg unconditionally (which uses the caller's
__FILE__ and __LINE__ for memory leak debugging), but this would make
memory debugging inconsistent. Instead, callers can use
CRYPTO_push_info() to track down memory leaks.
Also fix indentation, and add OpenSSL copyright.
CRYPTO_set_mem_debug_options() instead of CRYPTO_dbg_set_options(),
which is the default implementation of the former and should usually
not be directly used by applications (at least if we assume that the
options accepted by the default implementation will also be meaningful
to any other implementations).
Also fix apps/openssl.c and ssl/ssltest such that environment variable
setting 'OPENSSL_DEBUG_MEMORY=off' actively disables the compiled-in
library defaults (i.e. such that CRYPTO_MDEBUG is ignored in this
case).
(Some platforms need _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED to get
the declaration, but on other platforms _XOPEN_SOURCE disables
the strdup declaration in <string.h>.)
In err.c, flags int_error_hash_set and int_thread_hash_set
appear superfluous since we can just as well initialize
int_error_hash and int_thread_hash to NULL.
Change some of the err.c formatting to conform with the rest of
OpenSSL.
error strings - the destroy handler functions unload the error strings so
any pending error state referring to them will not attempt to reference
them after the ENGINE has been destroyed.
being enabled or disabled (respectively) for operation. Additionally, each
ENGINE has a constructor function where it can do more 'structural' level
intialisations such as loading error strings, creating "ex_data" indices,
etc. This change introduces a handler function that gives an ENGINE a
corresponding opportunity to cleanup when the ENGINE is being destroyed. It
also adds the "get/set" API functions that control this "destroy" handler
function in an ENGINE.
declaration and implementation had not. So a recent update recreated the
original definition in libeay.num ... this corrects it and changes the "dh"
code to the "up_ref" variant.
defined.
(Preprocessor symbols such as _POSIX_C_SOURCE or _XOPEN_SOURCE are
supposed to disable anything not allowed by the respective
specification; I'm not sure why 'strdup' would be considered
an outlaw though.)
locking callbacks to pass to the loaded library (in addition to the
existing mem, ex_data, and err callbacks). Also change the default
implementation of the "bind_engine" function to apply those callbacks, ie.
the IMPLEMENT_DYNAMIC_BIND_FN macro.
declare their own error strings so that they can be more easily compiled as
external shared-libraries if desired. Also, each implementation has been
given canonical "dynamic" support at the base of each file and is only
built if the ENGINE_DYNAMIC_SUPPORT symbol is defined.
Also, use "void" prototypes rather than empty prototypes in engine_int.h.
This does not yet;
(i) remove error strings when unloading,
(ii) remove the redundant ENGINE_R_*** codes (though ENGINE_F_*** codes
have gone), or
(iii) provide any instructions on how to build shared-library ENGINEs or
use them.
All are on their way.
implementations to be loaded from self-contained shared-libraries. It also
provides (in engine.h) definitions and macros to help implement a
self-contained ENGINE. Version control is handled in a way whereby the
loader or loadee can veto the load depending on any objections it has with
each other's declared interface level. The way this is currently
implemented assumes a veto will only take place when one side notices the
other's interface level is too *old*. If the other side is newer, it should
be assumed the newer version knows better whether to veto the load or not.
Version checking (like other "dynamic" settings) can be controlled using
the "dynamic" ENGINE's control commands. Also, the semantics for the
loading allow a shared-library ENGINE implementation to handle differing
interface levels on the fly (eg. loading secondary shared-libraries
depending on the versions required).
Code will be added soon to the existing ENGINEs to illustrate how they can
be built as external libraries rather than building statically into
libcrypto.
NB: Applications wanting to support "dynamic"-loadable ENGINEs will need to
add support for ENGINE "control commands". See apps/engine.c for an example
of this, and use "apps/openssl engine -vvvv" to test or experiment.