Found by coverity. This is an artifact left over from the original
decaf import which generated the source code for different curves. For
curve 448 this is dead.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6373)
Return immediately upon discovery of bad message digest.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6298)
This reverts commit a6f5b11634.
The EVP_PKEY_sign() function is intended for pre-hashed input which is
not supported by our EdDSA implementation.
See the discussion in PR 5880
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6284)
We check that the curve name associated with the point is the same as that
for the curve.
Fixes#6302
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6323)
Per SEC 1, the curve coefficients must be padded up to size. See C.2's
definition of Curve, C.1's definition of FieldElement, and 2.3.5's definition
of how to encode the field elements in http://www.secg.org/sec1-v2.pdf.
This comes up for P-521, where b needs a leading zero.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6314)
Using the ca application to sign certificates with EdDSA failed because it
is not possible to set the digest to "null". This adds the capability and
updates the documentation accordingly.
Fixes#6201
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6286)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
* EC_POINT_mul is now responsible for constant time point multiplication
(for single fixed or variable point multiplication, when the scalar is
in the range [0,group_order), so we need to strip the nonce padding
from ECDSA.
* Entry added to CHANGES
* Updated EC_POINT_mul documentation
- Integrate existing EC_POINT_mul and EC_POINTs_mul entries in the
manpage to reflect the shift in constant-time expectations when
performing a single fixed or variable point multiplication;
- Add documentation to ec_method_st to reflect the updated "contract"
between callers and implementations of ec_method_st.mul.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Cesar Pereida Garcia <cesar.pereidagarcia@tut.fi>
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6009)
Adding support for these operations for the EdDSA implementations
makes pkeyutl usable for signing/verifying for these algorithms.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5880)
felem_neg does not produce an output within the tight bounds suitable
for felem_contract. This affects build configurations which set
enable-ec_nistp_64_gcc_128.
point_double and point_add, in the non-z*_is_zero cases, tolerate and
fix up the wider bounds, so this only affects point_add calls where the
other point is infinity. Thus it only affects the final addition in
arbitrary-point multiplication, giving the wrong y-coordinate. This is a
no-op for ECDH and ECDSA, which only use the x-coordinate of
arbitrary-point operations.
Note: ecp_nistp521.c has the same issue in that the documented
preconditions are violated by the test case. I have not addressed this
in this PR. ecp_nistp521.c does not immediately produce the wrong
answer; felem_contract there appears to be a bit more tolerant than its
documented preconditions. However, I haven't checked the point_add
property above holds. ecp_nistp521.c should either get this same fix, to
be conservative, or have the bounds analysis and comments reworked for
the wider bounds.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5779)
Some platforms, cough-DJGPP, fail to compile claiming that requested
alignment is greater than maximum possible. Supposedly original
alignment was result of an attempt to utilize AVX2...
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5708)
In particular, x and y may be NULL, as used in ecdsa_ossl.c. Make use of
this in ecdh_ossl.c as well, to save an otherwise unnecessary temporary.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5532)
Without actually using EVP_PKEY_FLAG_AUTOARGLEN
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4793)
Unlike "upstream", Android NDK's arm64 gcc [but not clang] performs
64x64=128-bit multiplications with library calls, which appears to
have devastating impact on performance. [The condition is reduced to
__ANDROID__ [&& !__clang__], because x86_64 has corresponding
assembly module.]
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5589)
Debugging asserts had implicit casts that triggered the warnings.
However, instead of making the casts explicit it's more appropriate
to perform checks that ensure that implicit casts were safe.
ec/curve448/scalar.c: size_t-fy scalar_decode_short.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5494)
This adds all of the relevant EVP plumbing required to make
X448 and Ed448 work.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5481)
Why is it redundant? We're looking at carry from addition of small,
11-bit number to 256-bit one. And carry would mean only one thing,
resulting first limb being small number and remaing ones - zeros.
Hence adding 38 to first limb can't carry.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5476)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
As it turns out gcc -pedantic doesn't seem to consider __uint128_t
as non-standard, unlike __int128 that is.
Fix even MSVC warnings in curve25519.c.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
SPARC condition in __SIZEOF_INT128__==16 is rather performance thing
than portability. Even though compiler advertises int128 capability,
corresponding operations are inefficient, because they are not
directly backed by instruction set.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
Currently it's limited to 64-bit platforms only as minimum radix
expected in assembly is 2^51.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/5408)
3 least significant bits of the input scalar are explicitly cleared,
hence swap variable has fixed value [of zero] upon exit from the loop.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/5408)
The original curve448 code was templated to allow for a 25519
implementation. We've just imported the 448 stuff - but a remnant of
the original templated approach remained. This just simplifies that.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
We removed various platform specific optimisation files in an earlier
commit. The vector code was related to that and therefore is no longer
required. It may be resurrected at a later point if we reintroduce the
opimtisations.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Instead we should use the standard OpenSSL constant time routines.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
We already have a constant_time_select() function so, to avoid
confusion/clashing we shouldn't have a second one.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Remove all architecture specific files except for the reference arch_32
version. These files provide archicture specific performance optimisation.
However they have not been integrated yet. In order to avoid review issues
they are removed for now. They may be reintroduced at a later time.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Following running openssl-format-source there were a lot of manual tweaks
that were requried.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Some files talk about the MIT license. This code was contributed under
CLA and was relicensed to the OpenSSL licence when imported.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Unlike X448 the key lengths for ED448 are 57 bytes (as opposed to 56)
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
We have fully converted curve448 to use the OpenSSL shake256 implementation
so we can now remove the old one.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)