changes are the fallout). As this could break source code that doesn't
directly include headers for interfaces it uses, changes to recursive
includes are covered by the OPENSSL_NO_DEPRECATED symbol. It's better to
define this when building and using openssl, and then adapt code where
necessary - this is how to stay current. However the mechanism exists for
the lethargic.
Use BUF_strlcat() instead of strcat().
Use BIO_snprintf() instead of sprintf().
In some cases, keep better track of buffer lengths.
This is part of a large change submitted by Markus Friedl <markus@openbsd.org>
Additional changes:
- use EC_GROUP_get_degree() in apps/req.c
- add ECDSA and ECDH to apps/speed.c
- adds support for EC curves over binary fields to ECDSA
- new function EC_KEY_up_ref() in crypto/ec/ec_key.c
- reorganize crypto/ecdsa/ecdsatest.c
- add engine support for ECDH
- fix a few bugs in ECDSA engine support
Submitted by: Douglas Stebila <douglas.stebila@sun.com>
(the same keys can be used for ECC schemes other than ECDSA)
and add some new options.
Similarly, use string "EC PARAMETERS" instead of "ECDSA PARAMETERS"
in 'PEM' format.
Fix ec_asn1.c (take into account the desired conversion form).
'make update'.
Submitted by: Nils Larsch
getting the bottommost one. I hope I understood correctly how this
should be done. It seems to work when running evp_test in an
environment where it can't find openssl.cnf.
In err.c, flags int_error_hash_set and int_thread_hash_set
appear superfluous since we can just as well initialize
int_error_hash and int_thread_hash to NULL.
Change some of the err.c formatting to conform with the rest of
OpenSSL.
error strings and a hash table storing per-thread error state) go via an
ERR_FNS function table. The first time an ERR operation occurs, the
implementation that will be used (from then on) is set to the internal
"defaults" implementation if it has not already been set. The actual LHASH
tables are only accessed by this implementation.
This is primarily for modules that can be loaded at run-time and bound into
an application (or a shared-library version of OpenSSL). If the module has
its own statically-linked copy of OpenSSL code - this mechanism allows it
to *not* create and use ERR information in its own linked "ERR" code, but
instead to use and interact with the state stored in the loader
(application or shared library). The loader calls ERR_get_implementation()
and the return value is what the module should use when calling its own
copy of ERR_set_implementation().
like des_read_password and friends (backward compatibility functions
using this new API are provided). The purpose is to remove prompting
functions from the DES code section as well as provide for prompting
through dialog boxes in a window system and the like.
and make all files the depend on it include it without prefixing it
with openssl/.
This means that all Makefiles will have $(TOP) as one of the include
directories.
sure they are available in opensslconf.h, by giving them names starting
with "OPENSSL_" to avoid conflicts with other packages and by making
sure e_os2.h will cover all platform-specific cases together with
opensslconf.h.
I've checked fairly well that nothing breaks with this (apart from
external software that will adapt if they have used something like
NO_KRB5), but I can't guarantee it completely, so a review of this
change would be a good thing.
Set correct type in ASN1_STRING for
INTEGER and ENUMERATED types.
Make ASN1_INTEGER_get() and ASN1_ENUMERATED_get()
return -1 for invalid type rather than 0 (which is
often valid). -1 may also be valid but this is less
likely.
Load OCSP error strings in ERR_load_crypto_strings().
functions need to be constified, and therefore meant a number of easy
changes a little everywhere.
Now, if someone could explain to me why OBJ_dup() cheats...
DECLARE/IMPLEMENT macros now exist to create type (and prototype) safe
wrapper functions that avoid the use of function pointer casting yet retain
type-safety for type-specific callbacks. However, most of the usage within
OpenSSL itself doesn't really require the extra function because the hash
and compare callbacks are internal functions declared only for use by the
hash table. So this change catches all those cases and reimplements the
functions using the base-level LHASH prototypes and does per-variable
casting inside those functions to convert to the appropriate item type.
The exception so far is in ssl_lib.c where the hash and compare callbacks
are not static - they're exposed in ssl.h so their prototypes should not be
changed. In this last case, the IMPLEMENT_LHASH_*** macros have been left
intact.
casts) used in the lhash code are about as horrible and evil as they can
be. For starters, the callback prototypes contain empty parameter lists.
Yuck.
This first change defines clearer prototypes - including "typedef"'d
function pointer types to use as "hash" and "compare" callbacks, as well as
the callbacks passed to the lh_doall and lh_doall_arg iteration functions.
Now at least more explicit (and clear) casting is required in all of the
dependant code - and that should be included in this commit.
The next step will be to hunt down and obliterate some of the function
pointer casting being used when it's not necessary - a particularly evil
variant exists in the implementation of lh_doall.
could be done automagically, much like the numbering in libeay.num and
ssleay.num. The solution works as follows:
- New object identifiers are inserted in objects.txt, following the
syntax given in objects.README.
- objects.pl is used to process obj_mac.num and create a new
obj_mac.h.
- obj_dat.pl is used to create a new obj_dat.h, using the data in
obj_mac.h.
This is currently kind of a hack, and the perl code in objects.pl
isn't very elegant, but it works as I intended. The simplest way to
check that it worked correctly is to look in obj_dat.h and check the
array nid_objs and make sure the objects haven't moved around (this is
important!). Additions are OK, as well as consistent name changes.
was a really bad idea. For example, the following:
#include <x509.h>
#include <bio.h>
#include <asn1.h>
would make sure that things like ASN1_UTCTIME_print() wasn't defined
unless you moved the inclusion of bio.h to above the inclusion of
x509.h. The reason is that x509.h includes asn1.h, and the
declaration of ASN1_UTCTIME_print() depended on the definition of
HEADER_BIO_H. That's what I call an obscure bug.
Instead, this change makes sure that whatever header files are needed
for the correct process of one header file are included automagically,
and that the definitions of, for example, BIO-related things are
dependent on the absence of the NO_{foo} macros. This is also
consistent with the way parts of OpenSSL can be excluded at will.
like Malloc, Realloc and especially Free conflict with already existing names
on some operating systems or other packages. That is reason enough to change
the names of the OpenSSL memory allocation macros to something that has a
better chance of being unique, like prepending them with OPENSSL_.
This change includes all the name changes needed throughout all C files.
"Jan Mikkelsen" <janm@transactionsite.com> correctly states that the
OpenSSL header files have #include's and extern "C"'s in an incorrect
order. Thusly fixed.
variety of platforms. A few are missing, and they will be added in
eventually, but as this is new stuff, it was better to not break lots of
platforms in one go that we can't easily test. The changes to "Configure"
should illustrate how to add support to other systems if you feel like
having a go.
NB: I'll add something shortly to allow you to add "dlfcn.h" support on
those platforms that don't have (or need) a dlfcn.h header file. (The
symbol for Configure will probably by "dlfcn_no_h").
Thanks to Richard Levitte, who is responsible for the dso_dl.c support,
understanding the trickier aspects of the build process, and giving great
feedback on everything else.
[Don't use this stuff if you're easily offended by changes to the
interface or behaviour - it's still work in progress.]
PR: