#! /usr/bin/env perl # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html ############################################################################## # # # Copyright 2014 Intel Corporation # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ############################################################################## # # # Developers and authors: # # Shay Gueron (1, 2), and Vlad Krasnov (1) # # (1) Intel Corporation, Israel Development Center # # (2) University of Haifa # # Reference: # # S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with# # 256 Bit Primes" # # # ############################################################################## # Further optimization by : # # this/original with/without -DECP_NISTZ256_ASM(*) # Opteron +12-49% +110-150% # Bulldozer +14-45% +175-210% # P4 +18-46% n/a :-( # Westmere +12-34% +80-87% # Sandy Bridge +9-35% +110-120% # Ivy Bridge +9-35% +110-125% # Haswell +8-37% +140-160% # Broadwell +18-58% +145-210% # Atom +15-50% +130-180% # VIA Nano +43-160% +300-480% # # (*) "without -DECP_NISTZ256_ASM" refers to build with # "enable-ec_nistp_64_gcc_128"; # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, relatively fastest # server-side operation. Keep in mind that +100% means 2x improvement. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); $addx = ($1>=2.23); } if (!$addx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); $addx = ($1>=2.10); } if (!$addx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); $addx = ($1>=12); } if (!$addx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9])\.([0-9]+)/) { my $ver = $2 + $3/100.0; # 3.1->3.01, 3.10->3.10 $avx = ($ver>=3.0) + ($ver>=3.01); $addx = ($ver>=3.03); } $code.=<<___; .text .extern OPENSSL_ia32cap_P # The polynomial .align 64 .Lpoly: .quad 0xffffffffffffffff, 0x00000000ffffffff, 0x0000000000000000, 0xffffffff00000001 # 2^512 mod P precomputed for NIST P256 polynomial .LRR: .quad 0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd .LOne: .long 1,1,1,1,1,1,1,1 .LTwo: .long 2,2,2,2,2,2,2,2 .LThree: .long 3,3,3,3,3,3,3,3 .LONE_mont: .quad 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe ___ { ################################################################################ # void ecp_nistz256_mul_by_2(uint64_t res[4], uint64_t a[4]); my ($a0,$a1,$a2,$a3)=map("%r$_",(8..11)); my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rdx","%rcx","%r12","%r13"); my ($r_ptr,$a_ptr,$b_ptr)=("%rdi","%rsi","%rdx"); $code.=<<___; .globl ecp_nistz256_mul_by_2 .type ecp_nistz256_mul_by_2,\@function,2 .align 64 ecp_nistz256_mul_by_2: push %r12 push %r13 mov 8*0($a_ptr), $a0 xor $t4,$t4 mov 8*1($a_ptr), $a1 add $a0, $a0 # a0:a3+a0:a3 mov 8*2($a_ptr), $a2 adc $a1, $a1 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub 8*0($a_ptr), $a0 mov $a2, $t2 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a3, $t3 sbb 8*3($a_ptr), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 ################################################################################ # void ecp_nistz256_div_by_2(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_div_by_2 .type ecp_nistz256_div_by_2,\@function,2 .align 32 ecp_nistz256_div_by_2: push %r12 push %r13 mov 8*0($a_ptr), $a0 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov $a0, $t0 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a1, $t1 xor $t4, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 adc \$0, $t4 xor $a_ptr, $a_ptr # borrow $a_ptr test \$1, $t0 cmovz $t0, $a0 cmovz $t1, $a1 cmovz $t2, $a2 cmovz $t3, $a3 cmovz $a_ptr, $t4 mov $a1, $t0 # a0:a3>>1 shr \$1, $a0 shl \$63, $t0 mov $a2, $t1 shr \$1, $a1 or $t0, $a0 shl \$63, $t1 mov $a3, $t2 shr \$1, $a2 or $t1, $a1 shl \$63, $t2 shr \$1, $a3 shl \$63, $t4 or $t2, $a2 or $t4, $a3 mov $a0, 8*0($r_ptr) mov $a1, 8*1($r_ptr) mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 ################################################################################ # void ecp_nistz256_mul_by_3(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_mul_by_3 .type ecp_nistz256_mul_by_3,\@function,2 .align 32 ecp_nistz256_mul_by_3: push %r12 push %r13 mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 add $a0, $a0 # a0:a3+a0:a3 mov 8*2($a_ptr), $a2 adc $a1, $a1 mov 8*3($a_ptr), $a3 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb .Lpoly+8*1(%rip), $a1 sbb \$0, $a2 mov $a3, $t3 sbb .Lpoly+8*3(%rip), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 cmovc $t2, $a2 cmovc $t3, $a3 xor $t4, $t4 add 8*0($a_ptr), $a0 # a0:a3+=a_ptr[0:3] adc 8*1($a_ptr), $a1 mov $a0, $t0 adc 8*2($a_ptr), $a2 adc 8*3($a_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb .Lpoly+8*1(%rip), $a1 sbb \$0, $a2 mov $a3, $t3 sbb .Lpoly+8*3(%rip), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 ################################################################################ # void ecp_nistz256_add(uint64_t res[4], uint64_t a[4], uint64_t b[4]); .globl ecp_nistz256_add .type ecp_nistz256_add,\@function,3 .align 32 ecp_nistz256_add: push %r12 push %r13 mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr add 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub 8*0($a_ptr), $a0 mov $a2, $t2 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a3, $t3 sbb 8*3($a_ptr), $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_add,.-ecp_nistz256_add ################################################################################ # void ecp_nistz256_sub(uint64_t res[4], uint64_t a[4], uint64_t b[4]); .globl ecp_nistz256_sub .type ecp_nistz256_sub,\@function,3 .align 32 ecp_nistz256_sub: push %r12 push %r13 mov 8*0($a_ptr), $a0 xor $t4, $t4 mov 8*1($a_ptr), $a1 mov 8*2($a_ptr), $a2 mov 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr sub 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb \$0, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_sub,.-ecp_nistz256_sub ################################################################################ # void ecp_nistz256_neg(uint64_t res[4], uint64_t a[4]); .globl ecp_nistz256_neg .type ecp_nistz256_neg,\@function,2 .align 32 ecp_nistz256_neg: push %r12 push %r13 xor $a0, $a0 xor $a1, $a1 xor $a2, $a2 xor $a3, $a3 xor $t4, $t4 sub 8*0($a_ptr), $a0 sbb 8*1($a_ptr), $a1 sbb 8*2($a_ptr), $a2 mov $a0, $t0 sbb 8*3($a_ptr), $a3 lea .Lpoly(%rip), $a_ptr mov $a1, $t1 sbb \$0, $t4 add 8*0($a_ptr), $a0 mov $a2, $t2 adc 8*1($a_ptr), $a1 adc 8*2($a_ptr), $a2 mov $a3, $t3 adc 8*3($a_ptr), $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_neg,.-ecp_nistz256_neg ___ } { my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); my ($t0,$t1,$t2,$t3,$t4)=("%rcx","%rbp","%rbx","%rdx","%rax"); my ($poly1,$poly3)=($acc6,$acc7); $code.=<<___; ################################################################################ # void ecp_nistz256_to_mont( # uint64_t res[4], # uint64_t in[4]); .globl ecp_nistz256_to_mont .type ecp_nistz256_to_mont,\@function,2 .align 32 ecp_nistz256_to_mont: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; lea .LRR(%rip), $b_org jmp .Lmul_mont .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont ################################################################################ # void ecp_nistz256_mul_mont( # uint64_t res[4], # uint64_t a[4], # uint64_t b[4]); .globl ecp_nistz256_mul_mont .type ecp_nistz256_mul_mont,\@function,3 .align 32 ecp_nistz256_mul_mont: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; .Lmul_mont: push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($addx); cmp \$0x80100, %ecx je .Lmul_montx ___ $code.=<<___; mov $b_org, $b_ptr mov 8*0($b_org), %rax mov 8*0($a_ptr), $acc1 mov 8*1($a_ptr), $acc2 mov 8*2($a_ptr), $acc3 mov 8*3($a_ptr), $acc4 call __ecp_nistz256_mul_montq ___ $code.=<<___ if ($addx); jmp .Lmul_mont_done .align 32 .Lmul_montx: mov $b_org, $b_ptr mov 8*0($b_org), %rdx mov 8*0($a_ptr), $acc1 mov 8*1($a_ptr), $acc2 mov 8*2($a_ptr), $acc3 mov 8*3($a_ptr), $acc4 lea -128($a_ptr), $a_ptr # control u-op density call __ecp_nistz256_mul_montx ___ $code.=<<___; .Lmul_mont_done: pop %r15 pop %r14 pop %r13 pop %r12 pop %rbx pop %rbp ret .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont .type __ecp_nistz256_mul_montq,\@abi-omnipotent .align 32 __ecp_nistz256_mul_montq: ######################################################################## # Multiply a by b[0] mov %rax, $t1 mulq $acc1 mov .Lpoly+8*1(%rip),$poly1 mov %rax, $acc0 mov $t1, %rax mov %rdx, $acc1 mulq $acc2 mov .Lpoly+8*3(%rip),$poly3 add %rax, $acc1 mov $t1, %rax adc \$0, %rdx mov %rdx, $acc2 mulq $acc3 add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $acc3 mulq $acc4 add %rax, $acc3 mov $acc0, %rax adc \$0, %rdx xor $acc5, $acc5 mov %rdx, $acc4 ######################################################################## # First reduction step # Basically now we want to multiply acc[0] by p256, # and add the result to the acc. # Due to the special form of p256 we do some optimizations # # acc[0] x p256[0..1] = acc[0] x 2^96 - acc[0] # then we add acc[0] and get acc[0] x 2^96 mov $acc0, $t1 shl \$32, $acc0 mulq $poly3 shr \$32, $t1 add $acc0, $acc1 # +=acc[0]<<96 adc $t1, $acc2 adc %rax, $acc3 mov 8*1($b_ptr), %rax adc %rdx, $acc4 adc \$0, $acc5 xor $acc0, $acc0 ######################################################################## # Multiply by b[1] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc1 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc2 adc \$0, %rdx add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $acc1, %rax adc %rdx, $acc5 adc \$0, $acc0 ######################################################################## # Second reduction step mov $acc1, $t1 shl \$32, $acc1 mulq $poly3 shr \$32, $t1 add $acc1, $acc2 adc $t1, $acc3 adc %rax, $acc4 mov 8*2($b_ptr), %rax adc %rdx, $acc5 adc \$0, $acc0 xor $acc1, $acc1 ######################################################################## # Multiply by b[2] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc2 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc3 adc \$0, %rdx add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc5 adc \$0, %rdx add %rax, $acc5 mov $acc2, %rax adc %rdx, $acc0 adc \$0, $acc1 ######################################################################## # Third reduction step mov $acc2, $t1 shl \$32, $acc2 mulq $poly3 shr \$32, $t1 add $acc2, $acc3 adc $t1, $acc4 adc %rax, $acc5 mov 8*3($b_ptr), %rax adc %rdx, $acc0 adc \$0, $acc1 xor $acc2, $acc2 ######################################################################## # Multiply by b[3] mov %rax, $t1 mulq 8*0($a_ptr) add %rax, $acc3 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*1($a_ptr) add $t0, $acc4 adc \$0, %rdx add %rax, $acc4 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*2($a_ptr) add $t0, $acc5 adc \$0, %rdx add %rax, $acc5 mov $t1, %rax adc \$0, %rdx mov %rdx, $t0 mulq 8*3($a_ptr) add $t0, $acc0 adc \$0, %rdx add %rax, $acc0 mov $acc3, %rax adc %rdx, $acc1 adc \$0, $acc2 ######################################################################## # Final reduction step mov $acc3, $t1 shl \$32, $acc3 mulq $poly3 shr \$32, $t1 add $acc3, $acc4 adc $t1, $acc5 mov $acc4, $t0 adc %rax, $acc0 adc %rdx, $acc1 mov $acc5, $t1 adc \$0, $acc2 ######################################################################## # Branch-less conditional subtraction of P sub \$-1, $acc4 # .Lpoly[0] mov $acc0, $t2 sbb $poly1, $acc5 # .Lpoly[1] sbb \$0, $acc0 # .Lpoly[2] mov $acc1, $t3 sbb $poly3, $acc1 # .Lpoly[3] sbb \$0, $acc2 cmovc $t0, $acc4 cmovc $t1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $t2, $acc0 mov $acc5, 8*1($r_ptr) cmovc $t3, $acc1 mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) ret .size __ecp_nistz256_mul_montq,.-__ecp_nistz256_mul_montq ################################################################################ # void ecp_nistz256_sqr_mont( # uint64_t res[4], # uint64_t a[4]); # we optimize the square according to S.Gueron and V.Krasnov, # "Speeding up Big-Number Squaring" .globl ecp_nistz256_sqr_mont .type ecp_nistz256_sqr_mont,\@function,2 .align 32 ecp_nistz256_sqr_mont: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx ___ $code.=<<___; push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($addx); cmp \$0x80100, %ecx je .Lsqr_montx ___ $code.=<<___; mov 8*0($a_ptr), %rax mov 8*1($a_ptr), $acc6 mov 8*2($a_ptr), $acc7 mov 8*3($a_ptr), $acc0 call __ecp_nistz256_sqr_montq ___ $code.=<<___ if ($addx); jmp .Lsqr_mont_done .align 32 .Lsqr_montx: mov 8*0($a_ptr), %rdx mov 8*1($a_ptr), $acc6 mov 8*2($a_ptr), $acc7 mov 8*3($a_ptr), $acc0 lea -128($a_ptr), $a_ptr # control u-op density call __ecp_nistz256_sqr_montx ___ $code.=<<___; .Lsqr_mont_done: pop %r15 pop %r14 pop %r13 pop %r12 pop %rbx pop %rbp ret .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont .type __ecp_nistz256_sqr_montq,\@abi-omnipotent .align 32 __ecp_nistz256_sqr_montq: mov %rax, $acc5 mulq $acc6 # a[1]*a[0] mov %rax, $acc1 mov $acc7, %rax mov %rdx, $acc2 mulq $acc5 # a[0]*a[2] add %rax, $acc2 mov $acc0, %rax adc \$0, %rdx mov %rdx, $acc3 mulq $acc5 # a[0]*a[3] add %rax, $acc3 mov $acc7, %rax adc \$0, %rdx mov %rdx, $acc4 ################################# mulq $acc6 # a[1]*a[2] add %rax, $acc3 mov $acc0, %rax adc \$0, %rdx mov %rdx, $t1 mulq $acc6 # a[1]*a[3] add %rax, $acc4 mov $acc0, %rax adc \$0, %rdx add $t1, $acc4 mov %rdx, $acc5 adc \$0, $acc5 ################################# mulq $acc7 # a[2]*a[3] xor $acc7, $acc7 add %rax, $acc5 mov 8*0($a_ptr), %rax mov %rdx, $acc6 adc \$0, $acc6 add $acc1, $acc1 # acc1:6<<1 adc $acc2, $acc2 adc $acc3, $acc3 adc $acc4, $acc4 adc $acc5, $acc5 adc $acc6, $acc6 adc \$0, $acc7 mulq %rax mov %rax, $acc0 mov 8*1($a_ptr), %rax mov %rdx, $t0 mulq %rax add $t0, $acc1 adc %rax, $acc2 mov 8*2($a_ptr), %rax adc \$0, %rdx mov %rdx, $t0 mulq %rax add $t0, $acc3 adc %rax, $acc4 mov 8*3($a_ptr), %rax adc \$0, %rdx mov %rdx, $t0 mulq %rax add $t0, $acc5 adc %rax, $acc6 mov $acc0, %rax adc %rdx, $acc7 mov .Lpoly+8*1(%rip), $a_ptr mov .Lpoly+8*3(%rip), $t1 ########################################## # Now the reduction # First iteration mov $acc0, $t0 shl \$32, $acc0 mulq $t1 shr \$32, $t0 add $acc0, $acc1 # +=acc[0]<<96 adc $t0, $acc2 adc %rax, $acc3 mov $acc1, %rax adc \$0, %rdx ########################################## # Second iteration mov $acc1, $t0 shl \$32, $acc1 mov %rdx, $acc0 mulq $t1 shr \$32, $t0 add $acc1, $acc2 adc $t0, $acc3 adc %rax, $acc0 mov $acc2, %rax adc \$0, %rdx ########################################## # Third iteration mov $acc2, $t0 shl \$32, $acc2 mov %rdx, $acc1 mulq $t1 shr \$32, $t0 add $acc2, $acc3 adc $t0, $acc0 adc %rax, $acc1 mov $acc3, %rax adc \$0, %rdx ########################################### # Last iteration mov $acc3, $t0 shl \$32, $acc3 mov %rdx, $acc2 mulq $t1 shr \$32, $t0 add $acc3, $acc0 adc $t0, $acc1 adc %rax, $acc2 adc \$0, %rdx xor $acc3, $acc3 ############################################ # Add the rest of the acc add $acc0, $acc4 adc $acc1, $acc5 mov $acc4, $acc0 adc $acc2, $acc6 adc %rdx, $acc7 mov $acc5, $acc1 adc \$0, $acc3 sub \$-1, $acc4 # .Lpoly[0] mov $acc6, $acc2 sbb $a_ptr, $acc5 # .Lpoly[1] sbb \$0, $acc6 # .Lpoly[2] mov $acc7, $t0 sbb $t1, $acc7 # .Lpoly[3] sbb \$0, $acc3 cmovc $acc0, $acc4 cmovc $acc1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $acc2, $acc6 mov $acc5, 8*1($r_ptr) cmovc $t0, $acc7 mov $acc6, 8*2($r_ptr) mov $acc7, 8*3($r_ptr) ret .size __ecp_nistz256_sqr_montq,.-__ecp_nistz256_sqr_montq ___ if ($addx) { $code.=<<___; .type __ecp_nistz256_mul_montx,\@abi-omnipotent .align 32 __ecp_nistz256_mul_montx: ######################################################################## # Multiply by b[0] mulx $acc1, $acc0, $acc1 mulx $acc2, $t0, $acc2 mov \$32, $poly1 xor $acc5, $acc5 # cf=0 mulx $acc3, $t1, $acc3 mov .Lpoly+8*3(%rip), $poly3 adc $t0, $acc1 mulx $acc4, $t0, $acc4 mov $acc0, %rdx adc $t1, $acc2 shlx $poly1,$acc0,$t1 adc $t0, $acc3 shrx $poly1,$acc0,$t0 adc \$0, $acc4 ######################################################################## # First reduction step add $t1, $acc1 adc $t0, $acc2 mulx $poly3, $t0, $t1 mov 8*1($b_ptr), %rdx adc $t0, $acc3 adc $t1, $acc4 adc \$0, $acc5 xor $acc0, $acc0 # $acc0=0,cf=0,of=0 ######################################################################## # Multiply by b[1] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc1 adox $t1, $acc2 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc1, %rdx adcx $t0, $acc4 shlx $poly1, $acc1, $t0 adox $t1, $acc5 shrx $poly1, $acc1, $t1 adcx $acc0, $acc5 adox $acc0, $acc0 adc \$0, $acc0 ######################################################################## # Second reduction step add $t0, $acc2 adc $t1, $acc3 mulx $poly3, $t0, $t1 mov 8*2($b_ptr), %rdx adc $t0, $acc4 adc $t1, $acc5 adc \$0, $acc0 xor $acc1 ,$acc1 # $acc1=0,cf=0,of=0 ######################################################################## # Multiply by b[2] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc2 adox $t1, $acc3 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc2, %rdx adcx $t0, $acc5 shlx $poly1, $acc2, $t0 adox $t1, $acc0 shrx $poly1, $acc2, $t1 adcx $acc1, $acc0 adox $acc1, $acc1 adc \$0, $acc1 ######################################################################## # Third reduction step add $t0, $acc3 adc $t1, $acc4 mulx $poly3, $t0, $t1 mov 8*3($b_ptr), %rdx adc $t0, $acc5 adc $t1, $acc0 adc \$0, $acc1 xor $acc2, $acc2 # $acc2=0,cf=0,of=0 ######################################################################## # Multiply by b[3] mulx 8*0+128($a_ptr), $t0, $t1 adcx $t0, $acc3 adox $t1, $acc4 mulx 8*1+128($a_ptr), $t0, $t1 adcx $t0, $acc4 adox $t1, $acc5 mulx 8*2+128($a_ptr), $t0, $t1 adcx $t0, $acc5 adox $t1, $acc0 mulx 8*3+128($a_ptr), $t0, $t1 mov $acc3, %rdx adcx $t0, $acc0 shlx $poly1, $acc3, $t0 adox $t1, $acc1 shrx $poly1, $acc3, $t1 adcx $acc2, $acc1 adox $acc2, $acc2 adc \$0, $acc2 ######################################################################## # Fourth reduction step add $t0, $acc4 adc $t1, $acc5 mulx $poly3, $t0, $t1 mov $acc4, $t2 mov .Lpoly+8*1(%rip), $poly1 adc $t0, $acc0 mov $acc5, $t3 adc $t1, $acc1 adc \$0, $acc2 ######################################################################## # Branch-less conditional subtraction of P xor %eax, %eax mov $acc0, $t0 sbb \$-1, $acc4 # .Lpoly[0] sbb $poly1, $acc5 # .Lpoly[1] sbb \$0, $acc0 # .Lpoly[2] mov $acc1, $t1 sbb $poly3, $acc1 # .Lpoly[3] sbb \$0, $acc2 cmovc $t2, $acc4 cmovc $t3, $acc5 mov $acc4, 8*0($r_ptr) cmovc $t0, $acc0 mov $acc5, 8*1($r_ptr) cmovc $t1, $acc1 mov $acc0, 8*2($r_ptr) mov $acc1, 8*3($r_ptr) ret .size __ecp_nistz256_mul_montx,.-__ecp_nistz256_mul_montx .type __ecp_nistz256_sqr_montx,\@abi-omnipotent .align 32 __ecp_nistz256_sqr_montx: mulx $acc6, $acc1, $acc2 # a[0]*a[1] mulx $acc7, $t0, $acc3 # a[0]*a[2] xor %eax, %eax adc $t0, $acc2 mulx $acc0, $t1, $acc4 # a[0]*a[3] mov $acc6, %rdx adc $t1, $acc3 adc \$0, $acc4 xor $acc5, $acc5 # $acc5=0,cf=0,of=0 ################################# mulx $acc7, $t0, $t1 # a[1]*a[2] adcx $t0, $acc3 adox $t1, $acc4 mulx $acc0, $t0, $t1 # a[1]*a[3] mov $acc7, %rdx adcx $t0, $acc4 adox $t1, $acc5 adc \$0, $acc5 ################################# mulx $acc0, $t0, $acc6 # a[2]*a[3] mov 8*0+128($a_ptr), %rdx xor $acc7, $acc7 # $acc7=0,cf=0,of=0 adcx $acc1, $acc1 # acc1:6<<1 adox $t0, $acc5 adcx $acc2, $acc2 adox $acc7, $acc6 # of=0 mulx %rdx, $acc0, $t1 mov 8*1+128($a_ptr), %rdx adcx $acc3, $acc3 adox $t1, $acc1 adcx $acc4, $acc4 mulx %rdx, $t0, $t4 mov 8*2+128($a_ptr), %rdx adcx $acc5, $acc5 adox $t0, $acc2 adcx $acc6, $acc6 .byte 0x67 mulx %rdx, $t0, $t1 mov 8*3+128($a_ptr), %rdx adox $t4, $acc3 adcx $acc7, $acc7 adox $t0, $acc4 mov \$32, $a_ptr adox $t1, $acc5 .byte 0x67,0x67 mulx %rdx, $t0, $t4 mov $acc0, %rdx adox $t0, $acc6 shlx $a_ptr, $acc0, $t0 adox $t4, $acc7 shrx $a_ptr, $acc0, $t4 mov .Lpoly+8*3(%rip), $t1 # reduction step 1 add $t0, $acc1 adc $t4, $acc2 mulx $t1, $t0, $acc0 mov $acc1, %rdx adc $t0, $acc3 shlx $a_ptr, $acc1, $t0 adc \$0, $acc0 shrx $a_ptr, $acc1, $t4 # reduction step 2 add $t0, $acc2 adc $t4, $acc3 mulx $t1, $t0, $acc1 mov $acc2, %rdx adc $t0, $acc0 shlx $a_ptr, $acc2, $t0 adc \$0, $acc1 shrx $a_ptr, $acc2, $t4 # reduction step 3 add $t0, $acc3 adc $t4, $acc0 mulx $t1, $t0, $acc2 mov $acc3, %rdx adc $t0, $acc1 shlx $a_ptr, $acc3, $t0 adc \$0, $acc2 shrx $a_ptr, $acc3, $t4 # reduction step 4 add $t0, $acc0 adc $t4, $acc1 mulx $t1, $t0, $acc3 adc $t0, $acc2 adc \$0, $acc3 xor $t3, $t3 # cf=0 adc $acc0, $acc4 # accumulate upper half mov .Lpoly+8*1(%rip), $a_ptr adc $acc1, $acc5 mov $acc4, $acc0 adc $acc2, $acc6 adc $acc3, $acc7 mov $acc5, $acc1 adc \$0, $t3 xor %eax, %eax # cf=0 sbb \$-1, $acc4 # .Lpoly[0] mov $acc6, $acc2 sbb $a_ptr, $acc5 # .Lpoly[1] sbb \$0, $acc6 # .Lpoly[2] mov $acc7, $acc3 sbb $t1, $acc7 # .Lpoly[3] sbb \$0, $t3 cmovc $acc0, $acc4 cmovc $acc1, $acc5 mov $acc4, 8*0($r_ptr) cmovc $acc2, $acc6 mov $acc5, 8*1($r_ptr) cmovc $acc3, $acc7 mov $acc6, 8*2($r_ptr) mov $acc7, 8*3($r_ptr) ret .size __ecp_nistz256_sqr_montx,.-__ecp_nistz256_sqr_montx ___ } } { my ($r_ptr,$in_ptr)=("%rdi","%rsi"); my ($acc0,$acc1,$acc2,$acc3)=map("%r$_",(8..11)); my ($t0,$t1,$t2)=("%rcx","%r12","%r13"); $code.=<<___; ################################################################################ # void ecp_nistz256_from_mont( # uint64_t res[4], # uint64_t in[4]); # This one performs Montgomery multiplication by 1, so we only need the reduction .globl ecp_nistz256_from_mont .type ecp_nistz256_from_mont,\@function,2 .align 32 ecp_nistz256_from_mont: push %r12 push %r13 mov 8*0($in_ptr), %rax mov .Lpoly+8*3(%rip), $t2 mov 8*1($in_ptr), $acc1 mov 8*2($in_ptr), $acc2 mov 8*3($in_ptr), $acc3 mov %rax, $acc0 mov .Lpoly+8*1(%rip), $t1 ######################################### # First iteration mov %rax, $t0 shl \$32, $acc0 mulq $t2 shr \$32, $t0 add $acc0, $acc1 adc $t0, $acc2 adc %rax, $acc3 mov $acc1, %rax adc \$0, %rdx ######################################### # Second iteration mov $acc1, $t0 shl \$32, $acc1 mov %rdx, $acc0 mulq $t2 shr \$32, $t0 add $acc1, $acc2 adc $t0, $acc3 adc %rax, $acc0 mov $acc2, %rax adc \$0, %rdx ########################################## # Third iteration mov $acc2, $t0 shl \$32, $acc2 mov %rdx, $acc1 mulq $t2 shr \$32, $t0 add $acc2, $acc3 adc $t0, $acc0 adc %rax, $acc1 mov $acc3, %rax adc \$0, %rdx ########################################### # Last iteration mov $acc3, $t0 shl \$32, $acc3 mov %rdx, $acc2 mulq $t2 shr \$32, $t0 add $acc3, $acc0 adc $t0, $acc1 mov $acc0, $t0 adc %rax, $acc2 mov $acc1, $in_ptr adc \$0, %rdx ########################################### # Branch-less conditional subtraction sub \$-1, $acc0 mov $acc2, %rax sbb $t1, $acc1 sbb \$0, $acc2 mov %rdx, $acc3 sbb $t2, %rdx sbb $t2, $t2 cmovnz $t0, $acc0 cmovnz $in_ptr, $acc1 mov $acc0, 8*0($r_ptr) cmovnz %rax, $acc2 mov $acc1, 8*1($r_ptr) cmovz %rdx, $acc3 mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) pop %r13 pop %r12 ret .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont ___ } { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($ONE,$INDEX,$Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("%xmm$_",(0..7)); my ($M0,$T0a,$T0b,$T0c,$T0d,$T0e,$T0f,$TMP0)=map("%xmm$_",(8..15)); my ($M1,$T2a,$T2b,$TMP2,$M2,$T2a,$T2b,$TMP2)=map("%xmm$_",(8..15)); $code.=<<___; ################################################################################ # void ecp_nistz256_scatter_w5(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_scatter_w5 .type ecp_nistz256_scatter_w5,\@abi-omnipotent .align 32 ecp_nistz256_scatter_w5: lea -3($index,$index,2), $index movdqa 0x00($in_t), %xmm0 shl \$5, $index movdqa 0x10($in_t), %xmm1 movdqa 0x20($in_t), %xmm2 movdqa 0x30($in_t), %xmm3 movdqa 0x40($in_t), %xmm4 movdqa 0x50($in_t), %xmm5 movdqa %xmm0, 0x00($val,$index) movdqa %xmm1, 0x10($val,$index) movdqa %xmm2, 0x20($val,$index) movdqa %xmm3, 0x30($val,$index) movdqa %xmm4, 0x40($val,$index) movdqa %xmm5, 0x50($val,$index) ret .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 ################################################################################ # void ecp_nistz256_gather_w5(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_gather_w5 .type ecp_nistz256_gather_w5,\@abi-omnipotent .align 32 ecp_nistz256_gather_w5: ___ $code.=<<___ if ($avx>1); mov OPENSSL_ia32cap_P+8(%rip), %eax test \$`1<<5`, %eax jnz .Lavx2_gather_w5 ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_gather_w5: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) ___ $code.=<<___; movdqa .LOne(%rip), $ONE movd $index, $INDEX pxor $Ra, $Ra pxor $Rb, $Rb pxor $Rc, $Rc pxor $Rd, $Rd pxor $Re, $Re pxor $Rf, $Rf movdqa $ONE, $M0 pshufd \$0, $INDEX, $INDEX mov \$16, %rax .Lselect_loop_sse_w5: movdqa $M0, $TMP0 paddd $ONE, $M0 pcmpeqd $INDEX, $TMP0 movdqa 16*0($in_t), $T0a movdqa 16*1($in_t), $T0b movdqa 16*2($in_t), $T0c movdqa 16*3($in_t), $T0d movdqa 16*4($in_t), $T0e movdqa 16*5($in_t), $T0f lea 16*6($in_t), $in_t pand $TMP0, $T0a pand $TMP0, $T0b por $T0a, $Ra pand $TMP0, $T0c por $T0b, $Rb pand $TMP0, $T0d por $T0c, $Rc pand $TMP0, $T0e por $T0d, $Rd pand $TMP0, $T0f por $T0e, $Re por $T0f, $Rf dec %rax jnz .Lselect_loop_sse_w5 movdqu $Ra, 16*0($val) movdqu $Rb, 16*1($val) movdqu $Rc, 16*2($val) movdqu $Rd, 16*3($val) movdqu $Re, 16*4($val) movdqu $Rf, 16*5($val) ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp .LSEH_end_ecp_nistz256_gather_w5: ___ $code.=<<___; ret .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 ################################################################################ # void ecp_nistz256_scatter_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_scatter_w7 .type ecp_nistz256_scatter_w7,\@abi-omnipotent .align 32 ecp_nistz256_scatter_w7: movdqu 0x00($in_t), %xmm0 shl \$6, $index movdqu 0x10($in_t), %xmm1 movdqu 0x20($in_t), %xmm2 movdqu 0x30($in_t), %xmm3 movdqa %xmm0, 0x00($val,$index) movdqa %xmm1, 0x10($val,$index) movdqa %xmm2, 0x20($val,$index) movdqa %xmm3, 0x30($val,$index) ret .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 ################################################################################ # void ecp_nistz256_gather_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_gather_w7 .type ecp_nistz256_gather_w7,\@abi-omnipotent .align 32 ecp_nistz256_gather_w7: ___ $code.=<<___ if ($avx>1); mov OPENSSL_ia32cap_P+8(%rip), %eax test \$`1<<5`, %eax jnz .Lavx2_gather_w7 ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_gather_w7: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax) .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax) .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax) .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax) .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax) .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax) .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax) .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax) .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax) .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax) ___ $code.=<<___; movdqa .LOne(%rip), $M0 movd $index, $INDEX pxor $Ra, $Ra pxor $Rb, $Rb pxor $Rc, $Rc pxor $Rd, $Rd movdqa $M0, $ONE pshufd \$0, $INDEX, $INDEX mov \$64, %rax .Lselect_loop_sse_w7: movdqa $M0, $TMP0 paddd $ONE, $M0 movdqa 16*0($in_t), $T0a movdqa 16*1($in_t), $T0b pcmpeqd $INDEX, $TMP0 movdqa 16*2($in_t), $T0c movdqa 16*3($in_t), $T0d lea 16*4($in_t), $in_t pand $TMP0, $T0a pand $TMP0, $T0b por $T0a, $Ra pand $TMP0, $T0c por $T0b, $Rb pand $TMP0, $T0d por $T0c, $Rc prefetcht0 255($in_t) por $T0d, $Rd dec %rax jnz .Lselect_loop_sse_w7 movdqu $Ra, 16*0($val) movdqu $Rb, 16*1($val) movdqu $Rc, 16*2($val) movdqu $Rd, 16*3($val) ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp .LSEH_end_ecp_nistz256_gather_w7: ___ $code.=<<___; ret .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ } if ($avx>1) { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($TWO,$INDEX,$Ra,$Rb,$Rc)=map("%ymm$_",(0..4)); my ($M0,$T0a,$T0b,$T0c,$TMP0)=map("%ymm$_",(5..9)); my ($M1,$T1a,$T1b,$T1c,$TMP1)=map("%ymm$_",(10..14)); $code.=<<___; ################################################################################ # void ecp_nistz256_avx2_gather_w5(uint64_t *val, uint64_t *in_t, int index); .type ecp_nistz256_avx2_gather_w5,\@abi-omnipotent .align 32 ecp_nistz256_avx2_gather_w5: .Lavx2_gather_w5: vzeroupper ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_avx2_gather_w5: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 #vmovaps %xmm6, -0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 #vmovaps %xmm7, -0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 #vmovaps %xmm8, 8(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 #vmovaps %xmm9, 0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 #vmovaps %xmm10, 0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 #vmovaps %xmm11, 0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 #vmovaps %xmm12, 0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 #vmovaps %xmm13, 0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 #vmovaps %xmm14, 0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 #vmovaps %xmm15, 0x70(%rax) ___ $code.=<<___; vmovdqa .LTwo(%rip), $TWO vpxor $Ra, $Ra, $Ra vpxor $Rb, $Rb, $Rb vpxor $Rc, $Rc, $Rc vmovdqa .LOne(%rip), $M0 vmovdqa .LTwo(%rip), $M1 vmovd $index, %xmm1 vpermd $INDEX, $Ra, $INDEX mov \$8, %rax .Lselect_loop_avx2_w5: vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vmovdqa 32*2($in_t), $T0c vmovdqa 32*3($in_t), $T1a vmovdqa 32*4($in_t), $T1b vmovdqa 32*5($in_t), $T1c vpcmpeqd $INDEX, $M0, $TMP0 vpcmpeqd $INDEX, $M1, $TMP1 vpaddd $TWO, $M0, $M0 vpaddd $TWO, $M1, $M1 lea 32*6($in_t), $in_t vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpand $TMP0, $T0c, $T0c vpand $TMP1, $T1a, $T1a vpand $TMP1, $T1b, $T1b vpand $TMP1, $T1c, $T1c vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vpxor $T0c, $Rc, $Rc vpxor $T1a, $Ra, $Ra vpxor $T1b, $Rb, $Rb vpxor $T1c, $Rc, $Rc dec %rax jnz .Lselect_loop_avx2_w5 vmovdqu $Ra, 32*0($val) vmovdqu $Rb, 32*1($val) vmovdqu $Rc, 32*2($val) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp .LSEH_end_ecp_nistz256_avx2_gather_w5: ___ $code.=<<___; ret .size ecp_nistz256_avx2_gather_w5,.-ecp_nistz256_avx2_gather_w5 ___ } if ($avx>1) { my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx"); my ($THREE,$INDEX,$Ra,$Rb)=map("%ymm$_",(0..3)); my ($M0,$T0a,$T0b,$TMP0)=map("%ymm$_",(4..7)); my ($M1,$T1a,$T1b,$TMP1)=map("%ymm$_",(8..11)); my ($M2,$T2a,$T2b,$TMP2)=map("%ymm$_",(12..15)); $code.=<<___; ################################################################################ # void ecp_nistz256_avx2_gather_w7(uint64_t *val, uint64_t *in_t, int index); .globl ecp_nistz256_avx2_gather_w7 .type ecp_nistz256_avx2_gather_w7,\@abi-omnipotent .align 32 ecp_nistz256_avx2_gather_w7: .Lavx2_gather_w7: vzeroupper ___ $code.=<<___ if ($win64); lea -0x88(%rsp), %rax .LSEH_begin_ecp_nistz256_avx2_gather_w7: .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 #vmovaps %xmm6, -0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 #vmovaps %xmm7, -0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 #vmovaps %xmm8, 8(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 #vmovaps %xmm9, 0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 #vmovaps %xmm10, 0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 #vmovaps %xmm11, 0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 #vmovaps %xmm12, 0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 #vmovaps %xmm13, 0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 #vmovaps %xmm14, 0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 #vmovaps %xmm15, 0x70(%rax) ___ $code.=<<___; vmovdqa .LThree(%rip), $THREE vpxor $Ra, $Ra, $Ra vpxor $Rb, $Rb, $Rb vmovdqa .LOne(%rip), $M0 vmovdqa .LTwo(%rip), $M1 vmovdqa .LThree(%rip), $M2 vmovd $index, %xmm1 vpermd $INDEX, $Ra, $INDEX # Skip index = 0, because it is implicitly the point at infinity mov \$21, %rax .Lselect_loop_avx2_w7: vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vmovdqa 32*2($in_t), $T1a vmovdqa 32*3($in_t), $T1b vmovdqa 32*4($in_t), $T2a vmovdqa 32*5($in_t), $T2b vpcmpeqd $INDEX, $M0, $TMP0 vpcmpeqd $INDEX, $M1, $TMP1 vpcmpeqd $INDEX, $M2, $TMP2 vpaddd $THREE, $M0, $M0 vpaddd $THREE, $M1, $M1 vpaddd $THREE, $M2, $M2 lea 32*6($in_t), $in_t vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpand $TMP1, $T1a, $T1a vpand $TMP1, $T1b, $T1b vpand $TMP2, $T2a, $T2a vpand $TMP2, $T2b, $T2b vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vpxor $T1a, $Ra, $Ra vpxor $T1b, $Rb, $Rb vpxor $T2a, $Ra, $Ra vpxor $T2b, $Rb, $Rb dec %rax jnz .Lselect_loop_avx2_w7 vmovdqa 32*0($in_t), $T0a vmovdqa 32*1($in_t), $T0b vpcmpeqd $INDEX, $M0, $TMP0 vpand $TMP0, $T0a, $T0a vpand $TMP0, $T0b, $T0b vpxor $T0a, $Ra, $Ra vpxor $T0b, $Rb, $Rb vmovdqu $Ra, 32*0($val) vmovdqu $Rb, 32*1($val) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp), %xmm6 movaps 0x10(%rsp), %xmm7 movaps 0x20(%rsp), %xmm8 movaps 0x30(%rsp), %xmm9 movaps 0x40(%rsp), %xmm10 movaps 0x50(%rsp), %xmm11 movaps 0x60(%rsp), %xmm12 movaps 0x70(%rsp), %xmm13 movaps 0x80(%rsp), %xmm14 movaps 0x90(%rsp), %xmm15 lea 0xa8(%rsp), %rsp .LSEH_end_ecp_nistz256_avx2_gather_w7: ___ $code.=<<___; ret .size ecp_nistz256_avx2_gather_w7,.-ecp_nistz256_avx2_gather_w7 ___ } else { $code.=<<___; .globl ecp_nistz256_avx2_gather_w7 .type ecp_nistz256_avx2_gather_w7,\@function,3 .align 32 ecp_nistz256_avx2_gather_w7: .byte 0x0f,0x0b # ud2 ret .size ecp_nistz256_avx2_gather_w7,.-ecp_nistz256_avx2_gather_w7 ___ } {{{ ######################################################################## # This block implements higher level point_double, point_add and # point_add_affine. The key to performance in this case is to allow # out-of-order execution logic to overlap computations from next step # with tail processing from current step. By using tailored calling # sequence we minimize inter-step overhead to give processor better # shot at overlapping operations... # # You will notice that input data is copied to stack. Trouble is that # there are no registers to spare for holding original pointers and # reloading them, pointers, would create undesired dependencies on # effective addresses calculation paths. In other words it's too done # to favour out-of-order execution logic. # my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx"); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15)); my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rbp","%rcx",$acc4,$acc4); my ($poly1,$poly3)=($acc6,$acc7); sub load_for_mul () { my ($a,$b,$src0) = @_; my $bias = $src0 eq "%rax" ? 0 : -128; " mov $b, $src0 lea $b, $b_ptr mov 8*0+$a, $acc1 mov 8*1+$a, $acc2 lea $bias+$a, $a_ptr mov 8*2+$a, $acc3 mov 8*3+$a, $acc4" } sub load_for_sqr () { my ($a,$src0) = @_; my $bias = $src0 eq "%rax" ? 0 : -128; " mov 8*0+$a, $src0 mov 8*1+$a, $acc6 lea $bias+$a, $a_ptr mov 8*2+$a, $acc7 mov 8*3+$a, $acc0" } { ######################################################################## # operate in 4-5-0-1 "name space" that matches multiplication output # my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); $code.=<<___; .type __ecp_nistz256_add_toq,\@abi-omnipotent .align 32 __ecp_nistz256_add_toq: xor $t4,$t4 add 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_add_toq,.-__ecp_nistz256_add_toq .type __ecp_nistz256_sub_fromq,\@abi-omnipotent .align 32 __ecp_nistz256_sub_fromq: sub 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb $t4, $t4 add \$-1, $a0 mov $a2, $t2 adc $poly1, $a1 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 test $t4, $t4 cmovz $t0, $a0 cmovz $t1, $a1 mov $a0, 8*0($r_ptr) cmovz $t2, $a2 mov $a1, 8*1($r_ptr) cmovz $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_sub_fromq,.-__ecp_nistz256_sub_fromq .type __ecp_nistz256_subq,\@abi-omnipotent .align 32 __ecp_nistz256_subq: sub $a0, $t0 sbb $a1, $t1 mov $t0, $a0 sbb $a2, $t2 sbb $a3, $t3 mov $t1, $a1 sbb $t4, $t4 add \$-1, $t0 mov $t2, $a2 adc $poly1, $t1 adc \$0, $t2 mov $t3, $a3 adc $poly3, $t3 test $t4, $t4 cmovnz $t0, $a0 cmovnz $t1, $a1 cmovnz $t2, $a2 cmovnz $t3, $a3 ret .size __ecp_nistz256_subq,.-__ecp_nistz256_subq .type __ecp_nistz256_mul_by_2q,\@abi-omnipotent .align 32 __ecp_nistz256_mul_by_2q: xor $t4, $t4 add $a0, $a0 # a0:a3+a0:a3 adc $a1, $a1 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 sub \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_mul_by_2q,.-__ecp_nistz256_mul_by_2q ___ } sub gen_double () { my $x = shift; my ($src0,$sfx,$bias); my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_double .type ecp_nistz256_point_double,\@function,2 .align 32 ecp_nistz256_point_double: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_doublex ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_doublex,\@function,2 .align 32 ecp_nistz256_point_doublex: .Lpoint_doublex: ___ } $code.=<<___; push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 sub \$32*5+8, %rsp .Lpoint_double_shortcut$x: movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr.x mov $a_ptr, $b_ptr # backup copy movdqu 0x10($a_ptr), %xmm1 mov 0x20+8*0($a_ptr), $acc4 # load in_y in "5-4-0-1" order mov 0x20+8*1($a_ptr), $acc5 mov 0x20+8*2($a_ptr), $acc0 mov 0x20+8*3($a_ptr), $acc1 mov .Lpoly+8*1(%rip), $poly1 mov .Lpoly+8*3(%rip), $poly3 movdqa %xmm0, $in_x(%rsp) movdqa %xmm1, $in_x+0x10(%rsp) lea 0x20($r_ptr), $acc2 lea 0x40($r_ptr), $acc3 movq $r_ptr, %xmm0 movq $acc2, %xmm1 movq $acc3, %xmm2 lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(S, in_y); mov 0x40+8*0($a_ptr), $src0 mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 lea 0x40-$bias($a_ptr), $a_ptr lea $Zsqr(%rsp), $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Zsqr, in_z); `&load_for_sqr("$S(%rsp)", "$src0")` lea $S(%rsp), $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(S, S); mov 0x20($b_ptr), $src0 # $b_ptr is still valid mov 0x40+8*0($b_ptr), $acc1 mov 0x40+8*1($b_ptr), $acc2 mov 0x40+8*2($b_ptr), $acc3 mov 0x40+8*3($b_ptr), $acc4 lea 0x40-$bias($b_ptr), $a_ptr lea 0x20($b_ptr), $b_ptr movq %xmm2, $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, in_z, in_y); call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(res_z, res_z); mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order mov $in_x+8*1(%rsp), $acc5 lea $Zsqr(%rsp), $b_ptr mov $in_x+8*2(%rsp), $acc0 mov $in_x+8*3(%rsp), $acc1 lea $M(%rsp), $r_ptr call __ecp_nistz256_add_to$x # p256_add(M, in_x, Zsqr); mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order mov $in_x+8*1(%rsp), $acc5 lea $Zsqr(%rsp), $b_ptr mov $in_x+8*2(%rsp), $acc0 mov $in_x+8*3(%rsp), $acc1 lea $Zsqr(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(Zsqr, in_x, Zsqr); `&load_for_sqr("$S(%rsp)", "$src0")` movq %xmm1, $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_y, S); ___ { ######## ecp_nistz256_div_by_2(res_y, res_y); ########################## # operate in 4-5-6-7 "name space" that matches squaring output # my ($poly1,$poly3)=($a_ptr,$t1); my ($a0,$a1,$a2,$a3,$t3,$t4,$t1)=($acc4,$acc5,$acc6,$acc7,$acc0,$acc1,$acc2); $code.=<<___; xor $t4, $t4 mov $a0, $t0 add \$-1, $a0 mov $a1, $t1 adc $poly1, $a1 mov $a2, $t2 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 adc \$0, $t4 xor $a_ptr, $a_ptr # borrow $a_ptr test \$1, $t0 cmovz $t0, $a0 cmovz $t1, $a1 cmovz $t2, $a2 cmovz $t3, $a3 cmovz $a_ptr, $t4 mov $a1, $t0 # a0:a3>>1 shr \$1, $a0 shl \$63, $t0 mov $a2, $t1 shr \$1, $a1 or $t0, $a0 shl \$63, $t1 mov $a3, $t2 shr \$1, $a2 or $t1, $a1 shl \$63, $t2 mov $a0, 8*0($r_ptr) shr \$1, $a3 mov $a1, 8*1($r_ptr) shl \$63, $t4 or $t2, $a2 or $t4, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$M(%rsp)", "$Zsqr(%rsp)", "$src0")` lea $M(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(M, M, Zsqr); lea $tmp0(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x lea $M(%rsp), $b_ptr lea $M(%rsp), $r_ptr call __ecp_nistz256_add_to$x # p256_mul_by_3(M, M); `&load_for_mul("$S(%rsp)", "$in_x(%rsp)", "$src0")` lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, in_x); lea $tmp0(%rsp), $r_ptr call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(tmp0, S); `&load_for_sqr("$M(%rsp)", "$src0")` movq %xmm0, $r_ptr call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_x, M); lea $tmp0(%rsp), $b_ptr mov $acc6, $acc0 # harmonize sqr output and sub input mov $acc7, $acc1 mov $a_ptr, $poly1 mov $t1, $poly3 call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, tmp0); mov $S+8*0(%rsp), $t0 mov $S+8*1(%rsp), $t1 mov $S+8*2(%rsp), $t2 mov $S+8*3(%rsp), $acc2 # "4-5-0-1" order lea $S(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(S, S, res_x); mov $M(%rsp), $src0 lea $M(%rsp), $b_ptr mov $acc4, $acc6 # harmonize sub output and mul input xor %ecx, %ecx mov $acc4, $S+8*0(%rsp) # have to save:-( mov $acc5, $acc2 mov $acc5, $S+8*1(%rsp) cmovz $acc0, $acc3 mov $acc0, $S+8*2(%rsp) lea $S-$bias(%rsp), $a_ptr cmovz $acc1, $acc4 mov $acc1, $S+8*3(%rsp) mov $acc6, $acc1 lea $S(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, M); movq %xmm1, $b_ptr movq %xmm1, $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, S, res_y); add \$32*5+8, %rsp pop %r15 pop %r14 pop %r13 pop %r12 pop %rbx pop %rbp ret .size ecp_nistz256_point_double$sfx,.-ecp_nistz256_point_double$sfx ___ } &gen_double("q"); sub gen_add () { my $x = shift; my ($src0,$sfx,$bias); my ($H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2, $res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_add .type ecp_nistz256_point_add,\@function,3 .align 32 ecp_nistz256_point_add: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_addx ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_addx,\@function,3 .align 32 ecp_nistz256_point_addx: .Lpoint_addx: ___ } $code.=<<___; push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 sub \$32*18+8, %rsp movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 movdqu 0x30($a_ptr), %xmm3 movdqu 0x40($a_ptr), %xmm4 movdqu 0x50($a_ptr), %xmm5 mov $a_ptr, $b_ptr # reassign mov $b_org, $a_ptr # reassign movdqa %xmm0, $in1_x(%rsp) movdqa %xmm1, $in1_x+0x10(%rsp) movdqa %xmm2, $in1_y(%rsp) movdqa %xmm3, $in1_y+0x10(%rsp) movdqa %xmm4, $in1_z(%rsp) movdqa %xmm5, $in1_z+0x10(%rsp) por %xmm4, %xmm5 movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$b_ptr pshufd \$0xb1, %xmm5, %xmm3 movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 por %xmm3, %xmm5 movdqu 0x30($a_ptr), %xmm3 mov 0x40+8*0($a_ptr), $src0 # load original in2_z mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 movdqa %xmm0, $in2_x(%rsp) pshufd \$0x1e, %xmm5, %xmm4 movdqa %xmm1, $in2_x+0x10(%rsp) movdqu 0x40($a_ptr),%xmm0 # in2_z again movdqu 0x50($a_ptr),%xmm1 movdqa %xmm2, $in2_y(%rsp) movdqa %xmm3, $in2_y+0x10(%rsp) por %xmm4, %xmm5 pxor %xmm4, %xmm4 por %xmm0, %xmm1 movq $r_ptr, %xmm0 # save $r_ptr lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid mov $src0, $in2_z+8*0(%rsp) # make in2_z copy mov $acc6, $in2_z+8*1(%rsp) mov $acc7, $in2_z+8*2(%rsp) mov $acc0, $in2_z+8*3(%rsp) lea $Z2sqr(%rsp), $r_ptr # Z2^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z2sqr, in2_z); pcmpeqd %xmm4, %xmm5 pshufd \$0xb1, %xmm1, %xmm4 por %xmm1, %xmm4 pshufd \$0, %xmm5, %xmm5 # in1infty pshufd \$0x1e, %xmm4, %xmm3 por %xmm3, %xmm4 pxor %xmm3, %xmm3 pcmpeqd %xmm3, %xmm4 pshufd \$0, %xmm4, %xmm4 # in2infty mov 0x40+8*0($b_ptr), $src0 # load original in1_z mov 0x40+8*1($b_ptr), $acc6 mov 0x40+8*2($b_ptr), $acc7 mov 0x40+8*3($b_ptr), $acc0 movq $b_ptr, %xmm1 lea 0x40-$bias($b_ptr), $a_ptr lea $Z1sqr(%rsp), $r_ptr # Z1^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); `&load_for_mul("$Z2sqr(%rsp)", "$in2_z(%rsp)", "$src0")` lea $S1(%rsp), $r_ptr # S1 = Z2^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, Z2sqr, in2_z); `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); `&load_for_mul("$S1(%rsp)", "$in1_y(%rsp)", "$src0")` lea $S1(%rsp), $r_ptr # S1 = Y1*Z2^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, S1, in1_y); `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); lea $S1(%rsp), $b_ptr lea $R(%rsp), $r_ptr # R = S2 - S1 call __ecp_nistz256_sub_from$x # p256_sub(R, S2, S1); or $acc5, $acc4 # see if result is zero movdqa %xmm4, %xmm2 or $acc0, $acc4 or $acc1, $acc4 por %xmm5, %xmm2 # in1infty || in2infty movq $acc4, %xmm3 `&load_for_mul("$Z2sqr(%rsp)", "$in1_x(%rsp)", "$src0")` lea $U1(%rsp), $r_ptr # U1 = X1*Z2^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U1, in1_x, Z2sqr); `&load_for_mul("$Z1sqr(%rsp)", "$in2_x(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in2_x, Z1sqr); lea $U1(%rsp), $b_ptr lea $H(%rsp), $r_ptr # H = U2 - U1 call __ecp_nistz256_sub_from$x # p256_sub(H, U2, U1); or $acc5, $acc4 # see if result is zero or $acc0, $acc4 or $acc1, $acc4 .byte 0x3e # predict taken jnz .Ladd_proceed$x # is_equal(U1,U2)? movq %xmm2, $acc0 movq %xmm3, $acc1 test $acc0, $acc0 jnz .Ladd_proceed$x # (in1infty || in2infty)? test $acc1, $acc1 jz .Ladd_double$x # is_equal(S1,S2)? movq %xmm0, $r_ptr # restore $r_ptr pxor %xmm0, %xmm0 movdqu %xmm0, 0x00($r_ptr) movdqu %xmm0, 0x10($r_ptr) movdqu %xmm0, 0x20($r_ptr) movdqu %xmm0, 0x30($r_ptr) movdqu %xmm0, 0x40($r_ptr) movdqu %xmm0, 0x50($r_ptr) jmp .Ladd_done$x .align 32 .Ladd_double$x: movq %xmm1, $a_ptr # restore $a_ptr movq %xmm0, $r_ptr # restore $r_ptr add \$`32*(18-5)`, %rsp # difference in frame sizes jmp .Lpoint_double_shortcut$x .align 32 .Ladd_proceed$x: `&load_for_sqr("$R(%rsp)", "$src0")` lea $Rsqr(%rsp), $r_ptr # R^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); `&load_for_sqr("$H(%rsp)", "$src0")` lea $Hsqr(%rsp), $r_ptr # H^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); `&load_for_mul("$res_z(%rsp)", "$in2_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, res_z, in2_z); `&load_for_mul("$Hsqr(%rsp)", "$H(%rsp)", "$src0")` lea $Hcub(%rsp), $r_ptr # H^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); `&load_for_mul("$Hsqr(%rsp)", "$U1(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U1*H^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, U1, Hsqr); ___ { ####################################################################### # operate in 4-5-0-1 "name space" that matches multiplication output # my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); my ($poly1, $poly3)=($acc6,$acc7); $code.=<<___; #lea $U2(%rsp), $a_ptr #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); xor $t4, $t4 add $acc0, $acc0 # a0:a3+a0:a3 lea $Rsqr(%rsp), $a_ptr adc $acc1, $acc1 mov $acc0, $t0 adc $acc2, $acc2 adc $acc3, $acc3 mov $acc1, $t1 adc \$0, $t4 sub \$-1, $acc0 mov $acc2, $t2 sbb $poly1, $acc1 sbb \$0, $acc2 mov $acc3, $t3 sbb $poly3, $acc3 sbb \$0, $t4 cmovc $t0, $acc0 mov 8*0($a_ptr), $t0 cmovc $t1, $acc1 mov 8*1($a_ptr), $t1 cmovc $t2, $acc2 mov 8*2($a_ptr), $t2 cmovc $t3, $acc3 mov 8*3($a_ptr), $t3 call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); lea $Hcub(%rsp), $b_ptr lea $res_x(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); mov $U2+8*0(%rsp), $t0 mov $U2+8*1(%rsp), $t1 mov $U2+8*2(%rsp), $t2 mov $U2+8*3(%rsp), $t3 lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(res_y, U2, res_x); mov $acc0, 8*0($r_ptr) # save the result, as mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$S1(%rsp)", "$Hcub(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S1, Hcub); `&load_for_mul("$R(%rsp)", "$res_y(%rsp)", "$src0")` lea $res_y(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_y, R, res_y); lea $S2(%rsp), $b_ptr lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, res_y, S2); movq %xmm0, $r_ptr # restore $r_ptr movdqa %xmm5, %xmm0 # copy_conditional(res_z, in2_z, in1infty); movdqa %xmm5, %xmm1 pandn $res_z(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_z+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_z(%rsp), %xmm2 pand $in2_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_z(%rsp), %xmm2 pand $in1_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x40($r_ptr) movdqu %xmm3, 0x50($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); movdqa %xmm5, %xmm1 pandn $res_x(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_x+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_x(%rsp), %xmm2 pand $in2_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_x(%rsp), %xmm2 pand $in1_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x00($r_ptr) movdqu %xmm3, 0x10($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); movdqa %xmm5, %xmm1 pandn $res_y(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_y+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_y(%rsp), %xmm2 pand $in2_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_y(%rsp), %xmm2 pand $in1_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x20($r_ptr) movdqu %xmm3, 0x30($r_ptr) .Ladd_done$x: add \$32*18+8, %rsp pop %r15 pop %r14 pop %r13 pop %r12 pop %rbx pop %rbp ret .size ecp_nistz256_point_add$sfx,.-ecp_nistz256_point_add$sfx ___ } &gen_add("q"); sub gen_add_affine () { my $x = shift; my ($src0,$sfx,$bias); my ($U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr, $res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y)=map(32*$_,(0..14)); my $Z1sqr = $S2; if ($x ne "x") { $src0 = "%rax"; $sfx = ""; $bias = 0; $code.=<<___; .globl ecp_nistz256_point_add_affine .type ecp_nistz256_point_add_affine,\@function,3 .align 32 ecp_nistz256_point_add_affine: ___ $code.=<<___ if ($addx); mov \$0x80100, %ecx and OPENSSL_ia32cap_P+8(%rip), %ecx cmp \$0x80100, %ecx je .Lpoint_add_affinex ___ } else { $src0 = "%rdx"; $sfx = "x"; $bias = 128; $code.=<<___; .type ecp_nistz256_point_add_affinex,\@function,3 .align 32 ecp_nistz256_point_add_affinex: .Lpoint_add_affinex: ___ } $code.=<<___; push %rbp push %rbx push %r12 push %r13 push %r14 push %r15 sub \$32*15+8, %rsp movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr mov $b_org, $b_ptr # reassign movdqu 0x10($a_ptr), %xmm1 movdqu 0x20($a_ptr), %xmm2 movdqu 0x30($a_ptr), %xmm3 movdqu 0x40($a_ptr), %xmm4 movdqu 0x50($a_ptr), %xmm5 mov 0x40+8*0($a_ptr), $src0 # load original in1_z mov 0x40+8*1($a_ptr), $acc6 mov 0x40+8*2($a_ptr), $acc7 mov 0x40+8*3($a_ptr), $acc0 movdqa %xmm0, $in1_x(%rsp) movdqa %xmm1, $in1_x+0x10(%rsp) movdqa %xmm2, $in1_y(%rsp) movdqa %xmm3, $in1_y+0x10(%rsp) movdqa %xmm4, $in1_z(%rsp) movdqa %xmm5, $in1_z+0x10(%rsp) por %xmm4, %xmm5 movdqu 0x00($b_ptr), %xmm0 # copy *(P256_POINT_AFFINE *)$b_ptr pshufd \$0xb1, %xmm5, %xmm3 movdqu 0x10($b_ptr), %xmm1 movdqu 0x20($b_ptr), %xmm2 por %xmm3, %xmm5 movdqu 0x30($b_ptr), %xmm3 movdqa %xmm0, $in2_x(%rsp) pshufd \$0x1e, %xmm5, %xmm4 movdqa %xmm1, $in2_x+0x10(%rsp) por %xmm0, %xmm1 movq $r_ptr, %xmm0 # save $r_ptr movdqa %xmm2, $in2_y(%rsp) movdqa %xmm3, $in2_y+0x10(%rsp) por %xmm2, %xmm3 por %xmm4, %xmm5 pxor %xmm4, %xmm4 por %xmm1, %xmm3 lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid lea $Z1sqr(%rsp), $r_ptr # Z1^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z); pcmpeqd %xmm4, %xmm5 pshufd \$0xb1, %xmm3, %xmm4 mov 0x00($b_ptr), $src0 # $b_ptr is still valid #lea 0x00($b_ptr), $b_ptr mov $acc4, $acc1 # harmonize sqr output and mul input por %xmm3, %xmm4 pshufd \$0, %xmm5, %xmm5 # in1infty pshufd \$0x1e, %xmm4, %xmm3 mov $acc5, $acc2 por %xmm3, %xmm4 pxor %xmm3, %xmm3 mov $acc6, $acc3 pcmpeqd %xmm3, %xmm4 pshufd \$0, %xmm4, %xmm4 # in2infty lea $Z1sqr-$bias(%rsp), $a_ptr mov $acc7, $acc4 lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, Z1sqr, in2_x); lea $in1_x(%rsp), $b_ptr lea $H(%rsp), $r_ptr # H = U2 - U1 call __ecp_nistz256_sub_from$x # p256_sub(H, U2, in1_x); `&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z); `&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")` lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z); `&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y); lea $in1_y(%rsp), $b_ptr lea $R(%rsp), $r_ptr # R = S2 - S1 call __ecp_nistz256_sub_from$x # p256_sub(R, S2, in1_y); `&load_for_sqr("$H(%rsp)", "$src0")` lea $Hsqr(%rsp), $r_ptr # H^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H); `&load_for_sqr("$R(%rsp)", "$src0")` lea $Rsqr(%rsp), $r_ptr # R^2 call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R); `&load_for_mul("$H(%rsp)", "$Hsqr(%rsp)", "$src0")` lea $Hcub(%rsp), $r_ptr # H^3 call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H); `&load_for_mul("$Hsqr(%rsp)", "$in1_x(%rsp)", "$src0")` lea $U2(%rsp), $r_ptr # U1*H^2 call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in1_x, Hsqr); ___ { ####################################################################### # operate in 4-5-0-1 "name space" that matches multiplication output # my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); my ($poly1, $poly3)=($acc6,$acc7); $code.=<<___; #lea $U2(%rsp), $a_ptr #lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2 #call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2); xor $t4, $t4 add $acc0, $acc0 # a0:a3+a0:a3 lea $Rsqr(%rsp), $a_ptr adc $acc1, $acc1 mov $acc0, $t0 adc $acc2, $acc2 adc $acc3, $acc3 mov $acc1, $t1 adc \$0, $t4 sub \$-1, $acc0 mov $acc2, $t2 sbb $poly1, $acc1 sbb \$0, $acc2 mov $acc3, $t3 sbb $poly3, $acc3 sbb \$0, $t4 cmovc $t0, $acc0 mov 8*0($a_ptr), $t0 cmovc $t1, $acc1 mov 8*1($a_ptr), $t1 cmovc $t2, $acc2 mov 8*2($a_ptr), $t2 cmovc $t3, $acc3 mov 8*3($a_ptr), $t3 call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr); lea $Hcub(%rsp), $b_ptr lea $res_x(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub); mov $U2+8*0(%rsp), $t0 mov $U2+8*1(%rsp), $t1 mov $U2+8*2(%rsp), $t2 mov $U2+8*3(%rsp), $t3 lea $H(%rsp), $r_ptr call __ecp_nistz256_sub$x # p256_sub(H, U2, res_x); mov $acc0, 8*0($r_ptr) # save the result, as mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't mov $acc2, 8*2($r_ptr) mov $acc3, 8*3($r_ptr) ___ } $code.=<<___; `&load_for_mul("$Hcub(%rsp)", "$in1_y(%rsp)", "$src0")` lea $S2(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Hcub, in1_y); `&load_for_mul("$H(%rsp)", "$R(%rsp)", "$src0")` lea $H(%rsp), $r_ptr call __ecp_nistz256_mul_mont$x # p256_mul_mont(H, H, R); lea $S2(%rsp), $b_ptr lea $res_y(%rsp), $r_ptr call __ecp_nistz256_sub_from$x # p256_sub(res_y, H, S2); movq %xmm0, $r_ptr # restore $r_ptr movdqa %xmm5, %xmm0 # copy_conditional(res_z, ONE, in1infty); movdqa %xmm5, %xmm1 pandn $res_z(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_z+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand .LONE_mont(%rip), %xmm2 pand .LONE_mont+0x10(%rip), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_z(%rsp), %xmm2 pand $in1_z+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x40($r_ptr) movdqu %xmm3, 0x50($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty); movdqa %xmm5, %xmm1 pandn $res_x(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_x+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_x(%rsp), %xmm2 pand $in2_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_x(%rsp), %xmm2 pand $in1_x+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x00($r_ptr) movdqu %xmm3, 0x10($r_ptr) movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty); movdqa %xmm5, %xmm1 pandn $res_y(%rsp), %xmm0 movdqa %xmm5, %xmm2 pandn $res_y+0x10(%rsp), %xmm1 movdqa %xmm5, %xmm3 pand $in2_y(%rsp), %xmm2 pand $in2_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty); movdqa %xmm4, %xmm1 pandn %xmm2, %xmm0 movdqa %xmm4, %xmm2 pandn %xmm3, %xmm1 movdqa %xmm4, %xmm3 pand $in1_y(%rsp), %xmm2 pand $in1_y+0x10(%rsp), %xmm3 por %xmm0, %xmm2 por %xmm1, %xmm3 movdqu %xmm2, 0x20($r_ptr) movdqu %xmm3, 0x30($r_ptr) add \$32*15+8, %rsp pop %r15 pop %r14 pop %r13 pop %r12 pop %rbx pop %rbp ret .size ecp_nistz256_point_add_affine$sfx,.-ecp_nistz256_point_add_affine$sfx ___ } &gen_add_affine("q"); ######################################################################## # AD*X magic # if ($addx) { { ######################################################################## # operate in 4-5-0-1 "name space" that matches multiplication output # my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3); $code.=<<___; .type __ecp_nistz256_add_tox,\@abi-omnipotent .align 32 __ecp_nistz256_add_tox: xor $t4, $t4 adc 8*0($b_ptr), $a0 adc 8*1($b_ptr), $a1 mov $a0, $t0 adc 8*2($b_ptr), $a2 adc 8*3($b_ptr), $a3 mov $a1, $t1 adc \$0, $t4 xor $t3, $t3 sbb \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_add_tox,.-__ecp_nistz256_add_tox .type __ecp_nistz256_sub_fromx,\@abi-omnipotent .align 32 __ecp_nistz256_sub_fromx: xor $t4, $t4 sbb 8*0($b_ptr), $a0 sbb 8*1($b_ptr), $a1 mov $a0, $t0 sbb 8*2($b_ptr), $a2 sbb 8*3($b_ptr), $a3 mov $a1, $t1 sbb \$0, $t4 xor $t3, $t3 adc \$-1, $a0 mov $a2, $t2 adc $poly1, $a1 adc \$0, $a2 mov $a3, $t3 adc $poly3, $a3 bt \$0, $t4 cmovnc $t0, $a0 cmovnc $t1, $a1 mov $a0, 8*0($r_ptr) cmovnc $t2, $a2 mov $a1, 8*1($r_ptr) cmovnc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_sub_fromx,.-__ecp_nistz256_sub_fromx .type __ecp_nistz256_subx,\@abi-omnipotent .align 32 __ecp_nistz256_subx: xor $t4, $t4 sbb $a0, $t0 sbb $a1, $t1 mov $t0, $a0 sbb $a2, $t2 sbb $a3, $t3 mov $t1, $a1 sbb \$0, $t4 xor $a3 ,$a3 adc \$-1, $t0 mov $t2, $a2 adc $poly1, $t1 adc \$0, $t2 mov $t3, $a3 adc $poly3, $t3 bt \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 cmovc $t2, $a2 cmovc $t3, $a3 ret .size __ecp_nistz256_subx,.-__ecp_nistz256_subx .type __ecp_nistz256_mul_by_2x,\@abi-omnipotent .align 32 __ecp_nistz256_mul_by_2x: xor $t4, $t4 adc $a0, $a0 # a0:a3+a0:a3 adc $a1, $a1 mov $a0, $t0 adc $a2, $a2 adc $a3, $a3 mov $a1, $t1 adc \$0, $t4 xor $t3, $t3 sbb \$-1, $a0 mov $a2, $t2 sbb $poly1, $a1 sbb \$0, $a2 mov $a3, $t3 sbb $poly3, $a3 sbb \$0, $t4 cmovc $t0, $a0 cmovc $t1, $a1 mov $a0, 8*0($r_ptr) cmovc $t2, $a2 mov $a1, 8*1($r_ptr) cmovc $t3, $a3 mov $a2, 8*2($r_ptr) mov $a3, 8*3($r_ptr) ret .size __ecp_nistz256_mul_by_2x,.-__ecp_nistz256_mul_by_2x ___ } &gen_double("x"); &gen_add("x"); &gen_add_affine("x"); } }}} ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; die "insane number of elements" if ($#arr != 64*16*37-1); print <<___; .text .globl ecp_nistz256_precomputed .type ecp_nistz256_precomputed,\@object .align 4096 ecp_nistz256_precomputed: ___ while (@line=splice(@arr,0,16)) { print ".long\t",join(',',map { sprintf "0x%08x",$_} @line),"\n"; } print <<___; .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;