/* ==================================================================== * Copyright (c) 2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include "modes_lcl.h" #include #ifndef MODES_DEBUG # ifndef NDEBUG # define NDEBUG # endif #endif #include /* First you setup M and L parameters and pass the key schedule. * This is called once per session setup... */ void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, unsigned int M,unsigned int L,void *key,block128_f block) { memset(ctx->nonce.c,0,sizeof(ctx->nonce.c)); ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3; ctx->blocks = 0; ctx->block = block; ctx->key = key; } /* !!! Following interfaces are to be called *once* per packet !!! */ /* Then you setup per-message nonce and pass the length of the message */ int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, const unsigned char *nonce,size_t nlen,size_t mlen) { unsigned int L = ctx->nonce.c[0]&7; /* the L parameter */ if (nlen<(14-L)) return -1; /* nonce is too short */ if (sizeof(mlen)==8 && L>=3) { ctx->nonce.c[8] = (u8)(mlen>>(56%(sizeof(mlen)*8))); ctx->nonce.c[9] = (u8)(mlen>>(48%(sizeof(mlen)*8))); ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8))); ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8))); } else *(u32*)(&ctx->nonce.c[8]) = 0; ctx->nonce.c[12] = (u8)(mlen>>24); ctx->nonce.c[13] = (u8)(mlen>>16); ctx->nonce.c[14] = (u8)(mlen>>8); ctx->nonce.c[15] = (u8)mlen; ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */ memcpy(&ctx->nonce.c[1],nonce,14-L); return 0; } /* Then you pass additional authentication data, this is optional */ void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, const unsigned char *aad,size_t alen) { unsigned int i; block128_f block = ctx->block; if (alen==0) return; ctx->nonce.c[0] |= 0x40; /* set Adata flag */ (*block)(ctx->nonce.c,ctx->cmac.c,ctx->key), ctx->blocks++; if (alen<(0x10000-0x100)) { ctx->cmac.c[0] ^= (u8)(alen>>8); ctx->cmac.c[1] ^= (u8)alen; i=2; } else if (sizeof(alen)==8 && alen>=(size_t)1<<(32%(sizeof(alen)*8))) { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFF; ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8))); ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8))); ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8))); ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8))); ctx->cmac.c[6] ^= (u8)(alen>>24); ctx->cmac.c[7] ^= (u8)(alen>>16); ctx->cmac.c[8] ^= (u8)(alen>>8); ctx->cmac.c[9] ^= (u8)alen; i=10; } else { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFE; ctx->cmac.c[2] ^= (u8)(alen>>24); ctx->cmac.c[3] ^= (u8)(alen>>16); ctx->cmac.c[4] ^= (u8)(alen>>8); ctx->cmac.c[5] ^= (u8)alen; i=6; } do { for(;i<16 && alen;++i,++aad,--alen) ctx->cmac.c[i] ^= *aad; (*block)(ctx->cmac.c,ctx->cmac.c,ctx->key), ctx->blocks++; i=0; } while (alen); } /* Finally you encrypt or decrypt the message */ /* counter part of nonce may not be larger than L*8 bits, * L is not larger than 8, therefore 64-bit counter... */ static void ctr64_inc(unsigned char *counter) { unsigned int n=8; u8 c; counter += 8; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i,L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void * key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0&0x40)) (*block)(ctx->nonce.c,ctx->cmac.c,key), ctx->blocks++; ctx->nonce.c[0] = L = flags0&7; for (n=0,i=15-L;i<15;++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i]=0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15]=1; if (n!=len) return -1; /* length mismatch */ ctx->blocks += ((len+15)>>3)|1; if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */ while (len>=16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; memcpy (temp.c,inp,16); ctx->cmac.u[0] ^= temp.u[0]; ctx->cmac.u[1] ^= temp.u[1]; #else ctx->cmac.u[0] ^= ((u64*)inp)[0]; ctx->cmac.u[1] ^= ((u64*)inp)[1]; #endif (*block)(ctx->cmac.c,ctx->cmac.c,key); (*block)(ctx->nonce.c,scratch.c,key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) temp.u[0] ^= scratch.u[0]; temp.u[1] ^= scratch.u[1]; memcpy(out,temp.c,16); #else ((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]; ((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]; #endif inp += 16; out += 16; len -= 16; } if (len) { for (i=0; icmac.c[i] ^= inp[i]; (*block)(ctx->cmac.c,ctx->cmac.c,key); (*block)(ctx->nonce.c,scratch.c,key); for (i=0; inonce.c[i]=0; (*block)(ctx->nonce.c,scratch.c,key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i,L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void * key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0&0x40)) (*block)(ctx->nonce.c,ctx->cmac.c,key); ctx->nonce.c[0] = L = flags0&7; for (n=0,i=15-L;i<15;++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i]=0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15]=1; if (n!=len) return -1; while (len>=16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; #endif (*block)(ctx->nonce.c,scratch.c,key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) memcpy (temp.c,inp,16); ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]); ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]); memcpy (out,scratch.c,16); #else ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]); ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]); #endif (*block)(ctx->cmac.c,ctx->cmac.c,key); inp += 16; out += 16; len -= 16; } if (len) { (*block)(ctx->nonce.c,scratch.c,key); for (i=0; icmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]); (*block)(ctx->cmac.c,ctx->cmac.c,key); } for (i=15-L;i<16;++i) ctx->nonce.c[i]=0; (*block)(ctx->nonce.c,scratch.c,key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } static void ctr64_add (unsigned char *counter,size_t inc) { size_t n=8, val=0; counter += 8; do { --n; val += counter[n] + (inc&0xff); counter[n] = (unsigned char)val; val >>= 8; /* carry bit */ inc >>= 8; } while(n && (inc || val)); } int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len,ccm128_f stream) { size_t n; unsigned int i,L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void * key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0&0x40)) (*block)(ctx->nonce.c,ctx->cmac.c,key), ctx->blocks++; ctx->nonce.c[0] = L = flags0&7; for (n=0,i=15-L;i<15;++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i]=0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15]=1; if (n!=len) return -1; /* length mismatch */ ctx->blocks += ((len+15)>>3)|1; if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */ if ((n=len/16)) { (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; } if (len) { if (n) ctr64_add(ctx->nonce.c,n/16); for (i=0; icmac.c[i] ^= inp[i]; (*block)(ctx->cmac.c,ctx->cmac.c,key); (*block)(ctx->nonce.c,scratch.c,key); for (i=0; inonce.c[i]=0; (*block)(ctx->nonce.c,scratch.c,key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len,ccm128_f stream) { size_t n; unsigned int i,L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void * key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0&0x40)) (*block)(ctx->nonce.c,ctx->cmac.c,key); ctx->nonce.c[0] = L = flags0&7; for (n=0,i=15-L;i<15;++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i]=0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15]=1; if (n!=len) return -1; if ((n=len/16)) { (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; } if (len) { if (n) ctr64_add(ctx->nonce.c,n/16); (*block)(ctx->nonce.c,scratch.c,key); for (i=0; icmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]); (*block)(ctx->cmac.c,ctx->cmac.c,key); } for (i=15-L;i<16;++i) ctx->nonce.c[i]=0; (*block)(ctx->nonce.c,scratch.c,key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len) { unsigned int M = (ctx->nonce.c[0]>>3)&7; /* the M parameter */ M *= 2; M += 2; if (lencmac.c,M); return M; }