#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+128 bytes shared table]. Performance # results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU # and are expressed in cycles per processed byte, less is better: # # gcc 3.3.x cc 5.2 this assembler # # 32-bit build 81.4 43.3 12.6 (+546%/+244%) # 64-bit build 20.2 21.2 12.6 (+60%/+68%) # # Here is data collected on UltraSPARC T1 system running Linux: # # gcc 4.4.1 this assembler # # 32-bit build 566 50 (+1000%) # 64-bit build 56 50 (+12%) # # I don't quite understand why difference between 32-bit and 64-bit # compiler-generated code is so big. Compilers *were* instructed to # generate code for UltraSPARC and should have used 64-bit registers # for Z vector (see C code) even in 32-bit build... Oh well, it only # means more impressive improvement coefficients for this assembler # module;-) Loops are aggressively modulo-scheduled in respect to # references to input data and Z.hi updates to achieve 12 cycles # timing. To anchor to something else, sha1-sparcv9.pl spends 11.6 # cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1. # # October 2012 # # Add VIS3 lookup-table-free implementation using polynomial # multiplication xmulx[hi] and extended addition addxc[cc] # instructions. 4.52/7.63x improvement on T3/T4 or in absolute # terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark # saturates at ~15.5x single-process result on 8-core processor, # or ~20.5GBps per 2.85GHz socket. $output=pop; open STDOUT,">$output"; $frame="STACK_FRAME"; $bias="STACK_BIAS"; $Zhi="%o0"; # 64-bit values $Zlo="%o1"; $Thi="%o2"; $Tlo="%o3"; $rem="%o4"; $tmp="%o5"; $nhi="%l0"; # small values and pointers $nlo="%l1"; $xi0="%l2"; $xi1="%l3"; $rem_4bit="%l4"; $remi="%l5"; $Htblo="%l6"; $cnt="%l7"; $Xi="%i0"; # input argument block $Htbl="%i1"; $inp="%i2"; $len="%i3"; $code.=<<___; #include "sparc_arch.h" #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch #endif .section ".text",#alloc,#execinstr .align 64 rem_4bit: .long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 .long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 .long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 .long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 .type rem_4bit,#object .size rem_4bit,(.-rem_4bit) .globl gcm_ghash_4bit .align 32 gcm_ghash_4bit: save %sp,-$frame,%sp ldub [$inp+15],$nlo ldub [$Xi+15],$xi0 ldub [$Xi+14],$xi1 add $len,$inp,$len add $Htbl,8,$Htblo 1: call .+8 add %o7,rem_4bit-1b,$rem_4bit .Louter: xor $xi0,$nlo,$nlo and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$inp+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $xi1,$nlo,$nlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lghash_inner sll $nlo,4,$nlo .align 32 .Lghash_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo ldub [$Xi+$cnt],$xi1 xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $xi1,$nlo,$nlo srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lghash_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi add $inp,16,$inp cmp $inp,$len be,pn SIZE_T_CC,.Ldone and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$inp+15],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] srl $Zlo,8,$xi1 and $Zlo,0xff,$xi0 ba .Louter and $xi1,0xff,$xi1 .align 32 .Ldone: ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_ghash_4bit,#function .size gcm_ghash_4bit,(.-gcm_ghash_4bit) ___ undef $inp; undef $len; $code.=<<___; .globl gcm_gmult_4bit .align 32 gcm_gmult_4bit: save %sp,-$frame,%sp ldub [$Xi+15],$nlo add $Htbl,8,$Htblo 1: call .+8 add %o7,rem_4bit-1b,$rem_4bit and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo sll $nlo,4,$nlo ldx [$Htblo+$nlo],$Zlo ldx [$Htbl+$nlo],$Zhi ldub [$Xi+14],$nlo ldx [$Htblo+$nhi],$Tlo and $Zlo,0xf,$remi ldx [$Htbl+$nhi],$Thi sll $remi,3,$remi ldx [$rem_4bit+$remi],$rem srlx $Zlo,4,$Zlo mov 13,$cnt sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo and $Zlo,0xf,$remi and $nlo,0xf0,$nhi and $nlo,0x0f,$nlo ba .Lgmult_inner sll $nlo,4,$nlo .align 32 .Lgmult_inner: ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo ldub [$Xi+$cnt],$nlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp srlx $Zhi,4,$Zhi and $nlo,0xf0,$nhi addcc $cnt,-1,$cnt xor $Zlo,$tmp,$Zlo and $nlo,0x0f,$nlo xor $Tlo,$Zlo,$Zlo sll $nlo,4,$nlo blu .Lgmult_inner and $Zlo,0xf,$remi ldx [$Htblo+$nlo],$Tlo sll $remi,3,$remi xor $Thi,$Zhi,$Zhi ldx [$Htbl+$nlo],$Thi srlx $Zlo,4,$Zlo xor $rem,$Zhi,$Zhi ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi and $Zlo,0xf,$remi ldx [$Htblo+$nhi],$Tlo sll $remi,3,$remi xor $rem,$Zhi,$Zhi ldx [$Htbl+$nhi],$Thi srlx $Zlo,4,$Zlo ldx [$rem_4bit+$remi],$rem sllx $Zhi,60,$tmp xor $Tlo,$Zlo,$Zlo srlx $Zhi,4,$Zhi xor $Zlo,$tmp,$Zlo xor $Thi,$Zhi,$Zhi stx $Zlo,[$Xi+8] xor $rem,$Zhi,$Zhi stx $Zhi,[$Xi] ret restore .type gcm_gmult_4bit,#function .size gcm_gmult_4bit,(.-gcm_gmult_4bit) ___ {{{ # Straightforward 128x128-bit multiplication using Karatsuba algorithm # followed by pair of 64-bit reductions [with a shortcut in first one, # which allowed to break dependency between reductions and remove one # multiplication from critical path]. While it might be suboptimal # with regard to sheer number of multiplications, other methods [such # as aggregate reduction] would require more 64-bit registers, which # we don't have in 32-bit application context. ($Xip,$Htable,$inp,$len)=map("%i$_",(0..3)); ($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)= (map("%o$_",(0..5,7)),map("%g$_",(1..5))); ($shl,$shr)=map("%l$_",(0..7)); # For details regarding "twisted H" see ghash-x86.pl. $code.=<<___; .globl gcm_init_vis3 .align 32 gcm_init_vis3: save %sp,-$frame,%sp ldx [%i1+0],$Hhi ldx [%i1+8],$Hlo mov 0xE1,$Xhi mov 1,$Xlo sllx $Xhi,57,$Xhi srax $Hhi,63,$C0 ! broadcast carry addcc $Hlo,$Hlo,$Hlo ! H<<=1 addxc $Hhi,$Hhi,$Hhi and $C0,$Xlo,$Xlo and $C0,$Xhi,$Xhi xor $Xlo,$Hlo,$Hlo xor $Xhi,$Hhi,$Hhi stx $Hlo,[%i0+8] ! save twisted H stx $Hhi,[%i0+0] sethi %hi(0xA0406080),$V sethi %hi(0x20C0E000),%l0 or $V,%lo(0xA0406080),$V or %l0,%lo(0x20C0E000),%l0 sllx $V,32,$V or %l0,$V,$V ! (0xE0·i)&0xff=0xA040608020C0E000 stx $V,[%i0+16] ret restore .type gcm_init_vis3,#function .size gcm_init_vis3,.-gcm_init_vis3 .globl gcm_gmult_vis3 .align 32 gcm_gmult_vis3: save %sp,-$frame,%sp ldx [$Xip+8],$Xlo ! load Xi ldx [$Xip+0],$Xhi ldx [$Htable+8],$Hlo ! load twisted H ldx [$Htable+0],$Hhi mov 0xE1,%l7 sllx %l7,57,$xE1 ! 57 is not a typo ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000 xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing xmulx $Xlo,$Hlo,$C0 xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing xmulx $C2,$Hhl,$C1 xmulxhi $Xlo,$Hlo,$Xlo xmulxhi $C2,$Hhl,$C2 xmulxhi $Xhi,$Hhi,$C3 xmulx $Xhi,$Hhi,$Xhi sll $C0,3,$sqr srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)] xor $C0,$sqr,$sqr sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f] xor $C0,$C1,$C1 ! Karatsuba post-processing xor $Xlo,$C2,$C2 xor $sqr,$Xlo,$Xlo ! real destination is $C1 xor $C3,$C2,$C2 xor $Xlo,$C1,$C1 xor $Xhi,$C2,$C2 xor $Xhi,$C1,$C1 xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56 xor $C0,$C2,$C2 xmulx $C1,$xE1,$C0 xor $C1,$C3,$C3 xmulxhi $C1,$xE1,$C1 xor $Xlo,$C2,$C2 xor $C0,$C2,$C2 xor $C1,$C3,$C3 stx $C2,[$Xip+8] ! save Xi stx $C3,[$Xip+0] ret restore .type gcm_gmult_vis3,#function .size gcm_gmult_vis3,.-gcm_gmult_vis3 .globl gcm_ghash_vis3 .align 32 gcm_ghash_vis3: save %sp,-$frame,%sp ldx [$Xip+8],$C2 ! load Xi ldx [$Xip+0],$C3 ldx [$Htable+8],$Hlo ! load twisted H ldx [$Htable+0],$Hhi mov 0xE1,%l7 sllx %l7,57,$xE1 ! 57 is not a typo ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000 and $inp,7,$shl andn $inp,7,$inp sll $shl,3,$shl prefetch [$inp+63], 20 sub %g0,$shl,$shr xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing .Loop: ldx [$inp+8],$Xlo brz,pt $shl,1f ldx [$inp+0],$Xhi ldx [$inp+16],$C1 ! align data srlx $Xlo,$shr,$C0 sllx $Xlo,$shl,$Xlo sllx $Xhi,$shl,$Xhi srlx $C1,$shr,$C1 or $C0,$Xhi,$Xhi or $C1,$Xlo,$Xlo 1: add $inp,16,$inp sub $len,16,$len xor $C2,$Xlo,$Xlo xor $C3,$Xhi,$Xhi prefetch [$inp+63], 20 xmulx $Xlo,$Hlo,$C0 xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing xmulx $C2,$Hhl,$C1 xmulxhi $Xlo,$Hlo,$Xlo xmulxhi $C2,$Hhl,$C2 xmulxhi $Xhi,$Hhi,$C3 xmulx $Xhi,$Hhi,$Xhi sll $C0,3,$sqr srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)] xor $C0,$sqr,$sqr sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f] xor $C0,$C1,$C1 ! Karatsuba post-processing xor $Xlo,$C2,$C2 xor $sqr,$Xlo,$Xlo ! real destination is $C1 xor $C3,$C2,$C2 xor $Xlo,$C1,$C1 xor $Xhi,$C2,$C2 xor $Xhi,$C1,$C1 xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56 xor $C0,$C2,$C2 xmulx $C1,$xE1,$C0 xor $C1,$C3,$C3 xmulxhi $C1,$xE1,$C1 xor $Xlo,$C2,$C2 xor $C0,$C2,$C2 brnz,pt $len,.Loop xor $C1,$C3,$C3 stx $C2,[$Xip+8] ! save Xi stx $C3,[$Xip+0] ret restore .type gcm_ghash_vis3,#function .size gcm_ghash_vis3,.-gcm_ghash_vis3 ___ }}} $code.=<<___; .asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by " .align 4 ___ # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "xmulx" => 0x115, "xmulxhi" => 0x116 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT;