/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Support for PVK format keys and related structures (such a PUBLICKEYBLOB * and PRIVATEKEYBLOB). */ #include "internal/cryptlib.h" #include #include #include #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) # include # include /* * Utility function: read a DWORD (4 byte unsigned integer) in little endian * format */ static unsigned int read_ledword(const unsigned char **in) { const unsigned char *p = *in; unsigned int ret; ret = *p++; ret |= (*p++ << 8); ret |= (*p++ << 16); ret |= (*p++ << 24); *in = p; return ret; } /* * Read a BIGNUM in little endian format. The docs say that this should take * up bitlen/8 bytes. */ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) { *r = BN_lebin2bn(*in, nbyte, NULL); if (*r == NULL) return 0; *in += nbyte; return 1; } /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ # define MS_PUBLICKEYBLOB 0x6 # define MS_PRIVATEKEYBLOB 0x7 # define MS_RSA1MAGIC 0x31415352L # define MS_RSA2MAGIC 0x32415352L # define MS_DSS1MAGIC 0x31535344L # define MS_DSS2MAGIC 0x32535344L # define MS_KEYALG_RSA_KEYX 0xa400 # define MS_KEYALG_DSS_SIGN 0x2200 # define MS_KEYTYPE_KEYX 0x1 # define MS_KEYTYPE_SIGN 0x2 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ # define MS_PVKMAGIC 0xb0b5f11eL /* Salt length for PVK files */ # define PVK_SALTLEN 0x10 /* Maximum length in PVK header */ # define PVK_MAX_KEYLEN 102400 /* Maximum salt length */ # define PVK_MAX_SALTLEN 10240 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int bitlen, int ispub); static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int bitlen, int ispub); static int do_blob_header(const unsigned char **in, unsigned int length, unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) { const unsigned char *p = *in; if (length < 16) return 0; /* bType */ if (*p == MS_PUBLICKEYBLOB) { if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } *pispub = 1; } else if (*p == MS_PRIVATEKEYBLOB) { if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } *pispub = 0; } else return 0; p++; /* Version */ if (*p++ != 0x2) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); return 0; } /* Ignore reserved, aiKeyAlg */ p += 6; *pmagic = read_ledword(&p); *pbitlen = read_ledword(&p); *pisdss = 0; switch (*pmagic) { case MS_DSS1MAGIC: *pisdss = 1; case MS_RSA1MAGIC: if (*pispub == 0) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB); return 0; } break; case MS_DSS2MAGIC: *pisdss = 1; case MS_RSA2MAGIC: if (*pispub == 1) { PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB); return 0; } break; default: PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); return -1; } *in = p; return 1; } static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) { unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; if (isdss) { /* * Expected length: 20 for q + 3 components bitlen each + 24 for seed * structure. */ if (ispub) return 44 + 3 * nbyte; /* * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed * structure. */ else return 64 + 2 * nbyte; } else { /* Expected length: 4 for 'e' + 'n' */ if (ispub) return 4 + nbyte; else /* * Expected length: 4 for 'e' and 7 other components. 2 * components are bitlen size, 5 are bitlen/2 */ return 4 + 2 * nbyte + 5 * hnbyte; } } static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, int ispub) { const unsigned char *p = *in; unsigned int bitlen, magic; int isdss; if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); return NULL; } length -= 16; if (length < blob_length(bitlen, isdss, ispub)) { PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } if (isdss) return b2i_dss(&p, bitlen, ispub); else return b2i_rsa(&p, bitlen, ispub); } static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) { const unsigned char *p; unsigned char hdr_buf[16], *buf = NULL; unsigned int bitlen, magic, length; int isdss; EVP_PKEY *ret = NULL; if (BIO_read(in, hdr_buf, 16) != 16) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); return NULL; } p = hdr_buf; if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) return NULL; length = blob_length(bitlen, isdss, ispub); buf = OPENSSL_malloc(length); if (buf == NULL) { PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); goto err; } p = buf; if (BIO_read(in, buf, length) != (int)length) { PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); goto err; } if (isdss) ret = b2i_dss(&p, bitlen, ispub); else ret = b2i_rsa(&p, bitlen, ispub); err: OPENSSL_free(buf); return ret; } static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int bitlen, int ispub) { const unsigned char *p = *in; EVP_PKEY *ret = NULL; DSA *dsa = NULL; BN_CTX *ctx = NULL; unsigned int nbyte; BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL; BIGNUM *pub_key = NULL; nbyte = (bitlen + 7) >> 3; dsa = DSA_new(); ret = EVP_PKEY_new(); if (dsa == NULL || ret == NULL) goto memerr; if (!read_lebn(&p, nbyte, &pbn)) goto memerr; if (!read_lebn(&p, 20, &qbn)) goto memerr; if (!read_lebn(&p, nbyte, &gbn)) goto memerr; if (ispub) { if (!read_lebn(&p, nbyte, &pub_key)) goto memerr; } else { if (!read_lebn(&p, 20, &priv_key)) goto memerr; /* Calculate public key */ pub_key = BN_new(); if (pub_key == NULL) goto memerr; if ((ctx = BN_CTX_new()) == NULL) goto memerr; if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx)) goto memerr; BN_CTX_free(ctx); } if (!DSA_set0_pqg(dsa, pbn, qbn, gbn)) goto memerr; pbn = qbn = gbn = NULL; if (!DSA_set0_key(dsa, pub_key, priv_key)) goto memerr; EVP_PKEY_set1_DSA(ret, dsa); DSA_free(dsa); *in = p; return ret; memerr: PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); DSA_free(dsa); BN_free(pbn); BN_free(qbn); BN_free(gbn); BN_free(pub_key); BN_free(priv_key); EVP_PKEY_free(ret); BN_CTX_free(ctx); return NULL; } static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int bitlen, int ispub) { const unsigned char *pin = *in; EVP_PKEY *ret = NULL; BIGNUM *e = NULL, *n = NULL, *d = NULL; BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL; RSA *rsa = NULL; unsigned int nbyte, hnbyte; nbyte = (bitlen + 7) >> 3; hnbyte = (bitlen + 15) >> 4; rsa = RSA_new(); ret = EVP_PKEY_new(); if (rsa == NULL || ret == NULL) goto memerr; e = BN_new(); if (e == NULL) goto memerr; if (!BN_set_word(e, read_ledword(&pin))) goto memerr; if (!read_lebn(&pin, nbyte, &n)) goto memerr; if (!ispub) { if (!read_lebn(&pin, hnbyte, &p)) goto memerr; if (!read_lebn(&pin, hnbyte, &q)) goto memerr; if (!read_lebn(&pin, hnbyte, &dmp1)) goto memerr; if (!read_lebn(&pin, hnbyte, &dmq1)) goto memerr; if (!read_lebn(&pin, hnbyte, &iqmp)) goto memerr; if (!read_lebn(&pin, nbyte, &d)) goto memerr; RSA_set0_factors(rsa, p, q); RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp); } RSA_set0_key(rsa, n, e, d); EVP_PKEY_set1_RSA(ret, rsa); RSA_free(rsa); *in = pin; return ret; memerr: PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); BN_free(e); BN_free(n); BN_free(p); BN_free(q); BN_free(dmp1); BN_free(dmq1); BN_free(iqmp); BN_free(d); RSA_free(rsa); EVP_PKEY_free(ret); return NULL; } EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) { return do_b2i(in, length, 0); } EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) { return do_b2i(in, length, 1); } EVP_PKEY *b2i_PrivateKey_bio(BIO *in) { return do_b2i_bio(in, 0); } EVP_PKEY *b2i_PublicKey_bio(BIO *in) { return do_b2i_bio(in, 1); } static void write_ledword(unsigned char **out, unsigned int dw) { unsigned char *p = *out; *p++ = dw & 0xff; *p++ = (dw >> 8) & 0xff; *p++ = (dw >> 16) & 0xff; *p++ = (dw >> 24) & 0xff; *out = p; } static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) { BN_bn2lebinpad(bn, *out, len); *out += len; } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); static void write_rsa(unsigned char **out, RSA *rsa, int ispub); static void write_dsa(unsigned char **out, DSA *dsa, int ispub); static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) { unsigned char *p; unsigned int bitlen, magic = 0, keyalg; int outlen, noinc = 0; int pktype = EVP_PKEY_id(pk); if (pktype == EVP_PKEY_DSA) { bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic); keyalg = MS_KEYALG_DSS_SIGN; } else if (pktype == EVP_PKEY_RSA) { bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic); keyalg = MS_KEYALG_RSA_KEYX; } else return -1; if (bitlen == 0) return -1; outlen = 16 + blob_length(bitlen, keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); if (out == NULL) return outlen; if (*out) p = *out; else { p = OPENSSL_malloc(outlen); if (p == NULL) return -1; *out = p; noinc = 1; } if (ispub) *p++ = MS_PUBLICKEYBLOB; else *p++ = MS_PRIVATEKEYBLOB; *p++ = 0x2; *p++ = 0; *p++ = 0; write_ledword(&p, keyalg); write_ledword(&p, magic); write_ledword(&p, bitlen); if (keyalg == MS_KEYALG_DSS_SIGN) write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub); else write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub); if (!noinc) *out += outlen; return outlen; } static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = do_i2b(&tmp, pk, ispub); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) return outlen; return -1; } static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) { int bitlen; const BIGNUM *p = NULL, *q = NULL, *g = NULL; const BIGNUM *pub_key = NULL, *priv_key = NULL; DSA_get0_pqg(dsa, &p, &q, &g); DSA_get0_key(dsa, &pub_key, &priv_key); bitlen = BN_num_bits(p); if ((bitlen & 7) || (BN_num_bits(q) != 160) || (BN_num_bits(g) > bitlen)) goto badkey; if (ispub) { if (BN_num_bits(pub_key) > bitlen) goto badkey; *pmagic = MS_DSS1MAGIC; } else { if (BN_num_bits(priv_key) > 160) goto badkey; *pmagic = MS_DSS2MAGIC; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) { int nbyte, hnbyte, bitlen; const BIGNUM *e; RSA_get0_key(rsa, &e, NULL, NULL); if (BN_num_bits(e) > 32) goto badkey; bitlen = RSA_bits(rsa); nbyte = RSA_size(rsa); hnbyte = (bitlen + 15) >> 4; if (ispub) { *pmagic = MS_RSA1MAGIC; return bitlen; } else { const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1; *pmagic = MS_RSA2MAGIC; /* * For private key each component must fit within nbyte or hnbyte. */ RSA_get0_key(rsa, NULL, NULL, &d); if (BN_num_bytes(d) > nbyte) goto badkey; RSA_get0_factors(rsa, &p, &q); RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); if ((BN_num_bytes(iqmp) > hnbyte) || (BN_num_bytes(p) > hnbyte) || (BN_num_bytes(q) > hnbyte) || (BN_num_bytes(dmp1) > hnbyte) || (BN_num_bytes(dmq1) > hnbyte)) goto badkey; } return bitlen; badkey: PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); return 0; } static void write_rsa(unsigned char **out, RSA *rsa, int ispub) { int nbyte, hnbyte; const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1; nbyte = RSA_size(rsa); hnbyte = (RSA_bits(rsa) + 15) >> 4; RSA_get0_key(rsa, &e, &n, &d); write_lebn(out, e, 4); write_lebn(out, n, -1); if (ispub) return; RSA_get0_factors(rsa, &p, &q); RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); write_lebn(out, p, hnbyte); write_lebn(out, q, hnbyte); write_lebn(out, dmp1, hnbyte); write_lebn(out, dmq1, hnbyte); write_lebn(out, iqmp, hnbyte); write_lebn(out, d, nbyte); } static void write_dsa(unsigned char **out, DSA *dsa, int ispub) { int nbyte; const BIGNUM *p = NULL, *q = NULL, *g = NULL; const BIGNUM *pub_key = NULL, *priv_key = NULL; DSA_get0_pqg(dsa, &p, &q, &g); DSA_get0_key(dsa, &pub_key, &priv_key); nbyte = BN_num_bytes(p); write_lebn(out, p, nbyte); write_lebn(out, q, 20); write_lebn(out, g, nbyte); if (ispub) write_lebn(out, pub_key, nbyte); else write_lebn(out, priv_key, 20); /* Set "invalid" for seed structure values */ memset(*out, 0xff, 24); *out += 24; return; } int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 0); } int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) { return do_i2b_bio(out, pk, 1); } # ifndef OPENSSL_NO_RC4 static int do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, unsigned int *psaltlen, unsigned int *pkeylen) { const unsigned char *p = *in; unsigned int pvk_magic, is_encrypted; if (skip_magic) { if (length < 20) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } } else { if (length < 24) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); return 0; } pvk_magic = read_ledword(&p); if (pvk_magic != MS_PVKMAGIC) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); return 0; } } /* Skip reserved */ p += 4; /* * keytype = */ read_ledword(&p); is_encrypted = read_ledword(&p); *psaltlen = read_ledword(&p); *pkeylen = read_ledword(&p); if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN) return 0; if (is_encrypted && !*psaltlen) { PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); return 0; } *in = p; return 1; } static int derive_pvk_key(unsigned char *key, const unsigned char *salt, unsigned int saltlen, const unsigned char *pass, int passlen) { EVP_MD_CTX *mctx = EVP_MD_CTX_new(); int rv = 1; if (mctx == NULL || !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL) || !EVP_DigestUpdate(mctx, salt, saltlen) || !EVP_DigestUpdate(mctx, pass, passlen) || !EVP_DigestFinal_ex(mctx, key, NULL)) rv = 0; EVP_MD_CTX_free(mctx); return rv; } static EVP_PKEY *do_PVK_body(const unsigned char **in, unsigned int saltlen, unsigned int keylen, pem_password_cb *cb, void *u) { EVP_PKEY *ret = NULL; const unsigned char *p = *in; unsigned int magic; unsigned char *enctmp = NULL, *q; EVP_CIPHER_CTX *cctx = EVP_CIPHER_CTX_new(); if (saltlen) { char psbuf[PEM_BUFSIZE]; unsigned char keybuf[20]; int enctmplen, inlen; if (cb) inlen = cb(psbuf, PEM_BUFSIZE, 0, u); else inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); if (inlen <= 0) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); goto err; } enctmp = OPENSSL_malloc(keylen + 8); if (enctmp == NULL) { PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); goto err; } if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf, inlen)) goto err; p += saltlen; /* Copy BLOBHEADER across, decrypt rest */ memcpy(enctmp, p, 8); p += 8; if (keylen < 8) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT); goto err; } inlen = keylen - 8; q = enctmp + 8; if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto err; if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) goto err; if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) goto err; magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { q = enctmp + 8; memset(keybuf + 5, 0, 11); if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto err; OPENSSL_cleanse(keybuf, 20); if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) goto err; if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) goto err; magic = read_ledword((const unsigned char **)&q); if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); goto err; } } else OPENSSL_cleanse(keybuf, 20); p = enctmp; } ret = b2i_PrivateKey(&p, keylen); err: EVP_CIPHER_CTX_free(cctx); OPENSSL_free(enctmp); return ret; } EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) { unsigned char pvk_hdr[24], *buf = NULL; const unsigned char *p; int buflen; EVP_PKEY *ret = NULL; unsigned int saltlen, keylen; if (BIO_read(in, pvk_hdr, 24) != 24) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); return NULL; } p = pvk_hdr; if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) return 0; buflen = (int)keylen + saltlen; buf = OPENSSL_malloc(buflen); if (buf == NULL) { PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); return 0; } p = buf; if (BIO_read(in, buf, buflen) != buflen) { PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); goto err; } ret = do_PVK_body(&p, saltlen, keylen, cb, u); err: OPENSSL_clear_free(buf, buflen); return ret; } static int i2b_PVK(unsigned char **out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) { int outlen = 24, pklen; unsigned char *p = NULL, *salt = NULL; EVP_CIPHER_CTX *cctx = NULL; if (enclevel) outlen += PVK_SALTLEN; pklen = do_i2b(NULL, pk, 0); if (pklen < 0) return -1; outlen += pklen; if (out == NULL) return outlen; if (*out != NULL) { p = *out; } else { p = OPENSSL_malloc(outlen); if (p == NULL) { PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); return -1; } } cctx = EVP_CIPHER_CTX_new(); if (cctx == NULL) goto error; write_ledword(&p, MS_PVKMAGIC); write_ledword(&p, 0); if (EVP_PKEY_id(pk) == EVP_PKEY_DSA) write_ledword(&p, MS_KEYTYPE_SIGN); else write_ledword(&p, MS_KEYTYPE_KEYX); write_ledword(&p, enclevel ? 1 : 0); write_ledword(&p, enclevel ? PVK_SALTLEN : 0); write_ledword(&p, pklen); if (enclevel) { if (RAND_bytes(p, PVK_SALTLEN) <= 0) goto error; salt = p; p += PVK_SALTLEN; } do_i2b(&p, pk, 0); if (enclevel != 0) { char psbuf[PEM_BUFSIZE]; unsigned char keybuf[20]; int enctmplen, inlen; if (cb) inlen = cb(psbuf, PEM_BUFSIZE, 1, u); else inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); if (inlen <= 0) { PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); goto error; } if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, (unsigned char *)psbuf, inlen)) goto error; if (enclevel == 1) memset(keybuf + 5, 0, 11); p = salt + PVK_SALTLEN + 8; if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) goto error; OPENSSL_cleanse(keybuf, 20); if (!EVP_DecryptUpdate(cctx, p, &enctmplen, p, pklen - 8)) goto error; if (!EVP_DecryptFinal_ex(cctx, p + enctmplen, &enctmplen)) goto error; } EVP_CIPHER_CTX_free(cctx); if (*out == NULL) *out = p; return outlen; error: EVP_CIPHER_CTX_free(cctx); if (*out == NULL) OPENSSL_free(p); return -1; } int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) { unsigned char *tmp = NULL; int outlen, wrlen; outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); if (outlen < 0) return -1; wrlen = BIO_write(out, tmp, outlen); OPENSSL_free(tmp); if (wrlen == outlen) { PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); return outlen; } return -1; } # endif #endif