#! /usr/bin/env perl # Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA512 block transform for x86. September 2007. # # May 2013. # # Add SSSE3 code path, 20-25% improvement [over original SSE2 code]. # # Performance in clock cycles per processed byte (less is better): # # gcc icc x86 asm SIMD(*) x86_64(**) # Pentium 100 97 61 - - # PIII 75 77 56 - - # P4 116 95 82 34.6 30.8 # AMD K8 54 55 36 20.7 9.57 # Core2 66 57 40 15.9 9.97 # Westmere 70 - 38 12.2 9.58 # Sandy Bridge 58 - 35 11.9 11.2 # Ivy Bridge 50 - 33 11.5 8.17 # Haswell 46 - 29 11.3 7.66 # Skylake 40 - 26 13.3 7.25 # Bulldozer 121 - 50 14.0 13.5 # VIA Nano 91 - 52 33 14.7 # Atom 126 - 68 48(***) 14.7 # Silvermont 97 - 58 42(***) 17.5 # Goldmont 80 - 48 19.5 12.0 # # (*) whichever best applicable. # (**) x86_64 assembler performance is presented for reference # purposes, the results are for integer-only code. # (***) paddq is increadibly slow on Atom. # # IALU code-path is optimized for elder Pentiums. On vanilla Pentium # performance improvement over compiler generated code reaches ~60%, # while on PIII - ~35%. On newer ยต-archs improvement varies from 15% # to 50%, but it's less important as they are expected to execute SSE2 # code-path, which is commonly ~2-3x faster [than compiler generated # code]. SSE2 code-path is as fast as original sha512-sse2.pl, even # though it does not use 128-bit operations. The latter means that # SSE2-aware kernel is no longer required to execute the code. Another # difference is that new code optimizes amount of writes, but at the # cost of increased data cache "footprint" by 1/2KB. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],"sha512-586.pl",$ARGV[$#ARGV] eq "386"); $sse2=0; for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } &external_label("OPENSSL_ia32cap_P") if ($sse2); $Tlo=&DWP(0,"esp"); $Thi=&DWP(4,"esp"); $Alo=&DWP(8,"esp"); $Ahi=&DWP(8+4,"esp"); $Blo=&DWP(16,"esp"); $Bhi=&DWP(16+4,"esp"); $Clo=&DWP(24,"esp"); $Chi=&DWP(24+4,"esp"); $Dlo=&DWP(32,"esp"); $Dhi=&DWP(32+4,"esp"); $Elo=&DWP(40,"esp"); $Ehi=&DWP(40+4,"esp"); $Flo=&DWP(48,"esp"); $Fhi=&DWP(48+4,"esp"); $Glo=&DWP(56,"esp"); $Ghi=&DWP(56+4,"esp"); $Hlo=&DWP(64,"esp"); $Hhi=&DWP(64+4,"esp"); $K512="ebp"; $Asse2=&QWP(0,"esp"); $Bsse2=&QWP(8,"esp"); $Csse2=&QWP(16,"esp"); $Dsse2=&QWP(24,"esp"); $Esse2=&QWP(32,"esp"); $Fsse2=&QWP(40,"esp"); $Gsse2=&QWP(48,"esp"); $Hsse2=&QWP(56,"esp"); $A="mm0"; # B-D and $E="mm4"; # F-H are commonly loaded to respectively mm1-mm3 and # mm5-mm7, but it's done on on-demand basis... $BxC="mm2"; # ... except for B^C sub BODY_00_15_sse2 { my $phase=shift; #&movq ("mm5",$Fsse2); # load f #&movq ("mm6",$Gsse2); # load g &movq ("mm1",$E); # %mm1 is sliding right &pxor ("mm5","mm6"); # f^=g &psrlq ("mm1",14); &movq ($Esse2,$E); # modulo-scheduled save e &pand ("mm5",$E); # f&=e &psllq ($E,23); # $E is sliding left &movq ($A,"mm3") if ($phase<2); &movq (&QWP(8*9,"esp"),"mm7") # save X[i] &movq ("mm3","mm1"); # %mm3 is T1 &psrlq ("mm1",4); &pxor ("mm5","mm6"); # Ch(e,f,g) &pxor ("mm3",$E); &psllq ($E,23); &pxor ("mm3","mm1"); &movq ($Asse2,$A); # modulo-scheduled save a &paddq ("mm7","mm5"); # X[i]+=Ch(e,f,g) &pxor ("mm3",$E); &psrlq ("mm1",23); &paddq ("mm7",$Hsse2); # X[i]+=h &pxor ("mm3","mm1"); &psllq ($E,4); &paddq ("mm7",QWP(0,$K512)); # X[i]+=K512[i] &pxor ("mm3",$E); # T1=Sigma1_512(e) &movq ($E,$Dsse2); # e = load d, e in next round &paddq ("mm3","mm7"); # T1+=X[i] &movq ("mm5",$A); # %mm5 is sliding right &psrlq ("mm5",28); &paddq ($E,"mm3"); # d += T1 &movq ("mm6",$A); # %mm6 is sliding left &movq ("mm7","mm5"); &psllq ("mm6",25); &movq ("mm1",$Bsse2); # load b &psrlq ("mm5",6); &pxor ("mm7","mm6"); &sub ("esp",8); &psllq ("mm6",5); &pxor ("mm7","mm5"); &pxor ($A,"mm1"); # a^b, b^c in next round &psrlq ("mm5",5); &pxor ("mm7","mm6"); &pand ($BxC,$A); # (b^c)&(a^b) &psllq ("mm6",6); &pxor ("mm7","mm5"); &pxor ($BxC,"mm1"); # [h=]Maj(a,b,c) &pxor ("mm6","mm7"); # Sigma0_512(a) &movq ("mm7",&QWP(8*(9+16-1),"esp")) if ($phase!=0); # pre-fetch &movq ("mm5",$Fsse2) if ($phase==0); # load f if ($phase>1) { &paddq ($BxC,"mm6"); # h+=Sigma0(a) &add ($K512,8); #&paddq ($BxC,"mm3"); # h+=T1 ($A,$BxC) = ($BxC,$A); # rotate registers } else { &paddq ("mm3",$BxC); # T1+=Maj(a,b,c) &movq ($BxC,$A); &add ($K512,8); &paddq ("mm3","mm6"); # T1+=Sigma0(a) &movq ("mm6",$Gsse2) if ($phase==0); # load g #&movq ($A,"mm3"); # h=T1 } } sub BODY_00_15_x86 { #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) # LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23 # HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23 &mov ("ecx",$Elo); &mov ("edx",$Ehi); &mov ("esi","ecx"); &shr ("ecx",9); # lo>>9 &mov ("edi","edx"); &shr ("edx",9); # hi>>9 &mov ("ebx","ecx"); &shl ("esi",14); # lo<<14 &mov ("eax","edx"); &shl ("edi",14); # hi<<14 &xor ("ebx","esi"); &shr ("ecx",14-9); # lo>>14 &xor ("eax","edi"); &shr ("edx",14-9); # hi>>14 &xor ("eax","ecx"); &shl ("esi",18-14); # lo<<18 &xor ("ebx","edx"); &shl ("edi",18-14); # hi<<18 &xor ("ebx","esi"); &shr ("ecx",18-14); # lo>>18 &xor ("eax","edi"); &shr ("edx",18-14); # hi>>18 &xor ("eax","ecx"); &shl ("esi",23-18); # lo<<23 &xor ("ebx","edx"); &shl ("edi",23-18); # hi<<23 &xor ("eax","esi"); &xor ("ebx","edi"); # T1 = Sigma1(e) &mov ("ecx",$Flo); &mov ("edx",$Fhi); &mov ("esi",$Glo); &mov ("edi",$Ghi); &add ("eax",$Hlo); &adc ("ebx",$Hhi); # T1 += h &xor ("ecx","esi"); &xor ("edx","edi"); &and ("ecx",$Elo); &and ("edx",$Ehi); &add ("eax",&DWP(8*(9+15)+0,"esp")); &adc ("ebx",&DWP(8*(9+15)+4,"esp")); # T1 += X[0] &xor ("ecx","esi"); &xor ("edx","edi"); # Ch(e,f,g) = (f^g)&e)^g &mov ("esi",&DWP(0,$K512)); &mov ("edi",&DWP(4,$K512)); # K[i] &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += Ch(e,f,g) &mov ("ecx",$Dlo); &mov ("edx",$Dhi); &add ("eax","esi"); &adc ("ebx","edi"); # T1 += K[i] &mov ($Tlo,"eax"); &mov ($Thi,"ebx"); # put T1 away &add ("eax","ecx"); &adc ("ebx","edx"); # d += T1 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) # LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25 # HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25 &mov ("ecx",$Alo); &mov ("edx",$Ahi); &mov ($Dlo,"eax"); &mov ($Dhi,"ebx"); &mov ("esi","ecx"); &shr ("ecx",2); # lo>>2 &mov ("edi","edx"); &shr ("edx",2); # hi>>2 &mov ("ebx","ecx"); &shl ("esi",4); # lo<<4 &mov ("eax","edx"); &shl ("edi",4); # hi<<4 &xor ("ebx","esi"); &shr ("ecx",7-2); # lo>>7 &xor ("eax","edi"); &shr ("edx",7-2); # hi>>7 &xor ("ebx","ecx"); &shl ("esi",25-4); # lo<<25 &xor ("eax","edx"); &shl ("edi",25-4); # hi<<25 &xor ("eax","esi"); &shr ("ecx",28-7); # lo>>28 &xor ("ebx","edi"); &shr ("edx",28-7); # hi>>28 &xor ("eax","ecx"); &shl ("esi",30-25); # lo<<30 &xor ("ebx","edx"); &shl ("edi",30-25); # hi<<30 &xor ("eax","esi"); &xor ("ebx","edi"); # Sigma0(a) &mov ("ecx",$Alo); &mov ("edx",$Ahi); &mov ("esi",$Blo); &mov ("edi",$Bhi); &add ("eax",$Tlo); &adc ("ebx",$Thi); # T1 = Sigma0(a)+T1 &or ("ecx","esi"); &or ("edx","edi"); &and ("ecx",$Clo); &and ("edx",$Chi); &and ("esi",$Alo); &and ("edi",$Ahi); &or ("ecx","esi"); &or ("edx","edi"); # Maj(a,b,c) = ((a|b)&c)|(a&b) &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += Maj(a,b,c) &mov ($Tlo,"eax"); &mov ($Thi,"ebx"); &mov (&LB("edx"),&BP(0,$K512)); # pre-fetch LSB of *K &sub ("esp",8); &lea ($K512,&DWP(8,$K512)); # K++ } &function_begin("sha512_block_data_order"); &mov ("esi",wparam(0)); # ctx &mov ("edi",wparam(1)); # inp &mov ("eax",wparam(2)); # num &mov ("ebx","esp"); # saved sp &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($K512); &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512)); &sub ("esp",16); &and ("esp",-64); &shl ("eax",7); &add ("eax","edi"); &mov (&DWP(0,"esp"),"esi"); # ctx &mov (&DWP(4,"esp"),"edi"); # inp &mov (&DWP(8,"esp"),"eax"); # inp+num*128 &mov (&DWP(12,"esp"),"ebx"); # saved sp if ($sse2) { &picmeup("edx","OPENSSL_ia32cap_P",$K512,&label("K512")); &mov ("ecx",&DWP(0,"edx")); &test ("ecx",1<<26); &jz (&label("loop_x86")); &mov ("edx",&DWP(4,"edx")); # load ctx->h[0-7] &movq ($A,&QWP(0,"esi")); &and ("ecx",1<<24); # XMM registers availability &movq ("mm1",&QWP(8,"esi")); &and ("edx",1<<9); # SSSE3 bit &movq ($BxC,&QWP(16,"esi")); &or ("ecx","edx"); &movq ("mm3",&QWP(24,"esi")); &movq ($E,&QWP(32,"esi")); &movq ("mm5",&QWP(40,"esi")); &movq ("mm6",&QWP(48,"esi")); &movq ("mm7",&QWP(56,"esi")); &cmp ("ecx",1<<24|1<<9); &je (&label("SSSE3")); &sub ("esp",8*10); &jmp (&label("loop_sse2")); &set_label("loop_sse2",16); #&movq ($Asse2,$A); &movq ($Bsse2,"mm1"); &movq ($Csse2,$BxC); &movq ($Dsse2,"mm3"); #&movq ($Esse2,$E); &movq ($Fsse2,"mm5"); &movq ($Gsse2,"mm6"); &pxor ($BxC,"mm1"); # magic &movq ($Hsse2,"mm7"); &movq ("mm3",$A); # magic &mov ("eax",&DWP(0,"edi")); &mov ("ebx",&DWP(4,"edi")); &add ("edi",8); &mov ("edx",15); # counter &bswap ("eax"); &bswap ("ebx"); &jmp (&label("00_14_sse2")); &set_label("00_14_sse2",16); &movd ("mm1","eax"); &mov ("eax",&DWP(0,"edi")); &movd ("mm7","ebx"); &mov ("ebx",&DWP(4,"edi")); &add ("edi",8); &bswap ("eax"); &bswap ("ebx"); &punpckldq("mm7","mm1"); &BODY_00_15_sse2(); &dec ("edx"); &jnz (&label("00_14_sse2")); &movd ("mm1","eax"); &movd ("mm7","ebx"); &punpckldq("mm7","mm1"); &BODY_00_15_sse2(1); &pxor ($A,$A); # A is in %mm3 &mov ("edx",32); # counter &jmp (&label("16_79_sse2")); &set_label("16_79_sse2",16); for ($j=0;$j<2;$j++) { # 2x unroll #&movq ("mm7",&QWP(8*(9+16-1),"esp")); # prefetched in BODY_00_15 &movq ("mm5",&QWP(8*(9+16-14),"esp")); &movq ("mm1","mm7"); &psrlq ("mm7",1); &movq ("mm6","mm5"); &psrlq ("mm5",6); &psllq ("mm1",56); &paddq ($A,"mm3"); # from BODY_00_15 &movq ("mm3","mm7"); &psrlq ("mm7",7-1); &pxor ("mm3","mm1"); &psllq ("mm1",63-56); &pxor ("mm3","mm7"); &psrlq ("mm7",8-7); &pxor ("mm3","mm1"); &movq ("mm1","mm5"); &psrlq ("mm5",19-6); &pxor ("mm7","mm3"); # sigma0 &psllq ("mm6",3); &pxor ("mm1","mm5"); &paddq ("mm7",&QWP(8*(9+16),"esp")); &pxor ("mm1","mm6"); &psrlq ("mm5",61-19); &paddq ("mm7",&QWP(8*(9+16-9),"esp")); &pxor ("mm1","mm5"); &psllq ("mm6",45-3); &movq ("mm5",$Fsse2); # load f &pxor ("mm1","mm6"); # sigma1 &movq ("mm6",$Gsse2); # load g &paddq ("mm7","mm1"); # X[i] #&movq (&QWP(8*9,"esp"),"mm7"); # moved to BODY_00_15 &BODY_00_15_sse2(2); } &dec ("edx"); &jnz (&label("16_79_sse2")); #&movq ($A,$Asse2); &paddq ($A,"mm3"); # from BODY_00_15 &movq ("mm1",$Bsse2); #&movq ($BxC,$Csse2); &movq ("mm3",$Dsse2); #&movq ($E,$Esse2); &movq ("mm5",$Fsse2); &movq ("mm6",$Gsse2); &movq ("mm7",$Hsse2); &pxor ($BxC,"mm1"); # de-magic &paddq ($A,&QWP(0,"esi")); &paddq ("mm1",&QWP(8,"esi")); &paddq ($BxC,&QWP(16,"esi")); &paddq ("mm3",&QWP(24,"esi")); &paddq ($E,&QWP(32,"esi")); &paddq ("mm5",&QWP(40,"esi")); &paddq ("mm6",&QWP(48,"esi")); &paddq ("mm7",&QWP(56,"esi")); &mov ("eax",8*80); &movq (&QWP(0,"esi"),$A); &movq (&QWP(8,"esi"),"mm1"); &movq (&QWP(16,"esi"),$BxC); &movq (&QWP(24,"esi"),"mm3"); &movq (&QWP(32,"esi"),$E); &movq (&QWP(40,"esi"),"mm5"); &movq (&QWP(48,"esi"),"mm6"); &movq (&QWP(56,"esi"),"mm7"); &lea ("esp",&DWP(0,"esp","eax")); # destroy frame &sub ($K512,"eax"); # rewind K &cmp ("edi",&DWP(8*10+8,"esp")); # are we done yet? &jb (&label("loop_sse2")); &mov ("esp",&DWP(8*10+12,"esp")); # restore sp &emms (); &function_end_A(); &set_label("SSSE3",32); { my ($cnt,$frame)=("ecx","edx"); my @X=map("xmm$_",(0..7)); my $j; my $i=0; &lea ($frame,&DWP(-64,"esp")); &sub ("esp",256); # fixed stack frame layout # # +0 A B C D E F G H # backing store # +64 X[0]+K[i] .. X[15]+K[i] # XMM->MM xfer area # +192 # XMM off-load ring buffer # +256 # saved parameters &movdqa (@X[1],&QWP(80*8,$K512)); # byte swap mask &movdqu (@X[0],&QWP(0,"edi")); &pshufb (@X[0],@X[1]); for ($j=0;$j<8;$j++) { &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load &movdqa (@X[3],&QWP(16*($j%8),$K512)); &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask &movdqu (@X[1],&QWP(16*($j+1),"edi")) if ($j<7); # next input &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] &paddq (@X[3],@X[0]); &pshufb (@X[1],@X[2]) if ($j<7); &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]); # xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } #&jmp (&label("loop_ssse3")); &nop (); &set_label("loop_ssse3",32); &movdqa (@X[2],&QWP(16*(($j+1)%4),$frame)); # pre-restore @X[1] &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]); # off-load @X[3] &lea ($K512,&DWP(16*8,$K512)); #&movq ($Asse2,$A); # off-load A-H &movq ($Bsse2,"mm1"); &mov ("ebx","edi"); &movq ($Csse2,$BxC); &lea ("edi",&DWP(128,"edi")); # advance input &movq ($Dsse2,"mm3"); &cmp ("edi","eax"); #&movq ($Esse2,$E); &movq ($Fsse2,"mm5"); &cmovb ("ebx","edi"); &movq ($Gsse2,"mm6"); &mov ("ecx",4); # loop counter &pxor ($BxC,"mm1"); # magic &movq ($Hsse2,"mm7"); &pxor ("mm3","mm3"); # magic &jmp (&label("00_47_ssse3")); sub BODY_00_15_ssse3 { # "phase-less" copy of BODY_00_15_sse2 ( '&movq ("mm1",$E)', # %mm1 is sliding right '&movq ("mm7",&QWP(((-8*$i)%128)-128,$frame))',# X[i]+K[i] '&pxor ("mm5","mm6")', # f^=g '&psrlq ("mm1",14)', '&movq (&QWP(8*($i+4)%64,"esp"),$E)', # modulo-scheduled save e '&pand ("mm5",$E)', # f&=e '&psllq ($E,23)', # $E is sliding left '&paddq ($A,"mm3")', # [h+=Maj(a,b,c)] '&movq ("mm3","mm1")', # %mm3 is T1 '&psrlq("mm1",4)', '&pxor ("mm5","mm6")', # Ch(e,f,g) '&pxor ("mm3",$E)', '&psllq($E,23)', '&pxor ("mm3","mm1")', '&movq (&QWP(8*$i%64,"esp"),$A)', # modulo-scheduled save a '&paddq("mm7","mm5")', # X[i]+=Ch(e,f,g) '&pxor ("mm3",$E)', '&psrlq("mm1",23)', '&paddq("mm7",&QWP(8*($i+7)%64,"esp"))', # X[i]+=h '&pxor ("mm3","mm1")', '&psllq($E,4)', '&pxor ("mm3",$E)', # T1=Sigma1_512(e) '&movq ($E,&QWP(8*($i+3)%64,"esp"))', # e = load d, e in next round '&paddq ("mm3","mm7")', # T1+=X[i] '&movq ("mm5",$A)', # %mm5 is sliding right '&psrlq("mm5",28)', '&paddq ($E,"mm3")', # d += T1 '&movq ("mm6",$A)', # %mm6 is sliding left '&movq ("mm7","mm5")', '&psllq("mm6",25)', '&movq ("mm1",&QWP(8*($i+1)%64,"esp"))', # load b '&psrlq("mm5",6)', '&pxor ("mm7","mm6")', '&psllq("mm6",5)', '&pxor ("mm7","mm5")', '&pxor ($A,"mm1")', # a^b, b^c in next round '&psrlq("mm5",5)', '&pxor ("mm7","mm6")', '&pand ($BxC,$A)', # (b^c)&(a^b) '&psllq("mm6",6)', '&pxor ("mm7","mm5")', '&pxor ($BxC,"mm1")', # [h=]Maj(a,b,c) '&pxor ("mm6","mm7")', # Sigma0_512(a) '&movq ("mm5",&QWP(8*($i+5-1)%64,"esp"))', # pre-load f '&paddq ($BxC,"mm6")', # h+=Sigma0(a) '&movq ("mm6",&QWP(8*($i+6-1)%64,"esp"))', # pre-load g '($A,$BxC) = ($BxC,$A); $i--;' ); } &set_label("00_47_ssse3",32); for(;$j<16;$j++) { my ($t0,$t2,$t1)=@X[2..4]; my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); &movdqa ($t2,@X[5]); &movdqa (@X[1],$t0); # restore @X[1] &palignr ($t0,@X[0],8); # X[1..2] &movdqa (&QWP(16*($j%4),$frame),@X[4]); # off-load @X[4] &palignr ($t2,@X[4],8); # X[9..10] &movdqa ($t1,$t0); &psrlq ($t0,7); &paddq (@X[0],$t2); # X[0..1] += X[9..10] &movdqa ($t2,$t1); &psrlq ($t1,1); &psllq ($t2,64-8); &pxor ($t0,$t1); &psrlq ($t1,8-1); &pxor ($t0,$t2); &psllq ($t2,8-1); &pxor ($t0,$t1); &movdqa ($t1,@X[7]); &pxor ($t0,$t2); # sigma0(X[1..2]) &movdqa ($t2,@X[7]); &psrlq ($t1,6); &paddq (@X[0],$t0); # X[0..1] += sigma0(X[1..2]) &movdqa ($t0,@X[7]); &psrlq ($t2,19); &psllq ($t0,64-61); &pxor ($t1,$t2); &psrlq ($t2,61-19); &pxor ($t1,$t0); &psllq ($t0,61-19); &pxor ($t1,$t2); &movdqa ($t2,&QWP(16*(($j+2)%4),$frame));# pre-restore @X[1] &pxor ($t1,$t0); # sigma0(X[1..2]) &movdqa ($t0,&QWP(16*($j%8),$K512)); eval(shift(@insns)); &paddq (@X[0],$t1); # X[0..1] += sigma0(X[14..15]) eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); eval(shift(@insns)); &paddq ($t0,@X[0]); foreach(@insns) { eval; } &movdqa (&QWP(16*($j%8)-128,$frame),$t0);# xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } &lea ($K512,&DWP(16*8,$K512)); &dec ("ecx"); &jnz (&label("00_47_ssse3")); &movdqa (@X[1],&QWP(0,$K512)); # byte swap mask &lea ($K512,&DWP(-80*8,$K512)); # rewind &movdqu (@X[0],&QWP(0,"ebx")); &pshufb (@X[0],@X[1]); for ($j=0;$j<8;$j++) { # load next or same block my @insns = (&BODY_00_15_ssse3(),&BODY_00_15_ssse3()); &movdqa (&QWP(16*(($j-1)%4),$frame),@X[3]) if ($j>4); # off-load &movdqa (@X[3],&QWP(16*($j%8),$K512)); &movdqa (@X[2],@X[1]) if ($j<7); # perpetuate byte swap mask &movdqu (@X[1],&QWP(16*($j+1),"ebx")) if ($j<7); # next input &movdqa (@X[1],&QWP(16*(($j+1)%4),$frame)) if ($j==7);# restore @X[0] &paddq (@X[3],@X[0]); &pshufb (@X[1],@X[2]) if ($j<7); foreach(@insns) { eval; } &movdqa (&QWP(16*($j%8)-128,$frame),@X[3]);# xfer X[i]+K[i] push(@X,shift(@X)); # rotate(@X) } #&movq ($A,$Asse2); # load A-H &movq ("mm1",$Bsse2); &paddq ($A,"mm3"); # from BODY_00_15 #&movq ($BxC,$Csse2); &movq ("mm3",$Dsse2); #&movq ($E,$Esse2); #&movq ("mm5",$Fsse2); #&movq ("mm6",$Gsse2); &movq ("mm7",$Hsse2); &pxor ($BxC,"mm1"); # de-magic &paddq ($A,&QWP(0,"esi")); &paddq ("mm1",&QWP(8,"esi")); &paddq ($BxC,&QWP(16,"esi")); &paddq ("mm3",&QWP(24,"esi")); &paddq ($E,&QWP(32,"esi")); &paddq ("mm5",&QWP(40,"esi")); &paddq ("mm6",&QWP(48,"esi")); &paddq ("mm7",&QWP(56,"esi")); &movq (&QWP(0,"esi"),$A); &movq (&QWP(8,"esi"),"mm1"); &movq (&QWP(16,"esi"),$BxC); &movq (&QWP(24,"esi"),"mm3"); &movq (&QWP(32,"esi"),$E); &movq (&QWP(40,"esi"),"mm5"); &movq (&QWP(48,"esi"),"mm6"); &movq (&QWP(56,"esi"),"mm7"); &cmp ("edi","eax") # are we done yet? &jb (&label("loop_ssse3")); &mov ("esp",&DWP(64+12,$frame)); # restore sp &emms (); } &function_end_A(); } &set_label("loop_x86",16); # copy input block to stack reversing byte and qword order for ($i=0;$i<8;$i++) { &mov ("eax",&DWP($i*16+0,"edi")); &mov ("ebx",&DWP($i*16+4,"edi")); &mov ("ecx",&DWP($i*16+8,"edi")); &mov ("edx",&DWP($i*16+12,"edi")); &bswap ("eax"); &bswap ("ebx"); &bswap ("ecx"); &bswap ("edx"); &push ("eax"); &push ("ebx"); &push ("ecx"); &push ("edx"); } &add ("edi",128); &sub ("esp",9*8); # place for T,A,B,C,D,E,F,G,H &mov (&DWP(8*(9+16)+4,"esp"),"edi"); # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack &lea ("edi",&DWP(8,"esp")); &mov ("ecx",16); &data_word(0xA5F3F689); # rep movsd &set_label("00_15_x86",16); &BODY_00_15_x86(); &cmp (&LB("edx"),0x94); &jne (&label("00_15_x86")); &set_label("16_79_x86",16); #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) # LO lo>>1^hi<<31 ^ lo>>8^hi<<24 ^ lo>>7^hi<<25 # HI hi>>1^lo<<31 ^ hi>>8^lo<<24 ^ hi>>7 &mov ("ecx",&DWP(8*(9+15+16-1)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16-1)+4,"esp")); &mov ("esi","ecx"); &shr ("ecx",1); # lo>>1 &mov ("edi","edx"); &shr ("edx",1); # hi>>1 &mov ("eax","ecx"); &shl ("esi",24); # lo<<24 &mov ("ebx","edx"); &shl ("edi",24); # hi<<24 &xor ("ebx","esi"); &shr ("ecx",7-1); # lo>>7 &xor ("eax","edi"); &shr ("edx",7-1); # hi>>7 &xor ("eax","ecx"); &shl ("esi",31-24); # lo<<31 &xor ("ebx","edx"); &shl ("edi",25-24); # hi<<25 &xor ("ebx","esi"); &shr ("ecx",8-7); # lo>>8 &xor ("eax","edi"); &shr ("edx",8-7); # hi>>8 &xor ("eax","ecx"); &shl ("edi",31-25); # hi<<31 &xor ("ebx","edx"); &xor ("eax","edi"); # T1 = sigma0(X[-15]) &mov (&DWP(0,"esp"),"eax"); &mov (&DWP(4,"esp"),"ebx"); # put T1 away #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) # LO lo>>19^hi<<13 ^ hi>>29^lo<<3 ^ lo>>6^hi<<26 # HI hi>>19^lo<<13 ^ lo>>29^hi<<3 ^ hi>>6 &mov ("ecx",&DWP(8*(9+15+16-14)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16-14)+4,"esp")); &mov ("esi","ecx"); &shr ("ecx",6); # lo>>6 &mov ("edi","edx"); &shr ("edx",6); # hi>>6 &mov ("eax","ecx"); &shl ("esi",3); # lo<<3 &mov ("ebx","edx"); &shl ("edi",3); # hi<<3 &xor ("eax","esi"); &shr ("ecx",19-6); # lo>>19 &xor ("ebx","edi"); &shr ("edx",19-6); # hi>>19 &xor ("eax","ecx"); &shl ("esi",13-3); # lo<<13 &xor ("ebx","edx"); &shl ("edi",13-3); # hi<<13 &xor ("ebx","esi"); &shr ("ecx",29-19); # lo>>29 &xor ("eax","edi"); &shr ("edx",29-19); # hi>>29 &xor ("ebx","ecx"); &shl ("edi",26-13); # hi<<26 &xor ("eax","edx"); &xor ("eax","edi"); # sigma1(X[-2]) &mov ("ecx",&DWP(8*(9+15+16)+0,"esp")); &mov ("edx",&DWP(8*(9+15+16)+4,"esp")); &add ("eax",&DWP(0,"esp")); &adc ("ebx",&DWP(4,"esp")); # T1 = sigma1(X[-2])+T1 &mov ("esi",&DWP(8*(9+15+16-9)+0,"esp")); &mov ("edi",&DWP(8*(9+15+16-9)+4,"esp")); &add ("eax","ecx"); &adc ("ebx","edx"); # T1 += X[-16] &add ("eax","esi"); &adc ("ebx","edi"); # T1 += X[-7] &mov (&DWP(8*(9+15)+0,"esp"),"eax"); &mov (&DWP(8*(9+15)+4,"esp"),"ebx"); # save X[0] &BODY_00_15_x86(); &cmp (&LB("edx"),0x17); &jne (&label("16_79_x86")); &mov ("esi",&DWP(8*(9+16+80)+0,"esp"));# ctx &mov ("edi",&DWP(8*(9+16+80)+4,"esp"));# inp for($i=0;$i<4;$i++) { &mov ("eax",&DWP($i*16+0,"esi")); &mov ("ebx",&DWP($i*16+4,"esi")); &mov ("ecx",&DWP($i*16+8,"esi")); &mov ("edx",&DWP($i*16+12,"esi")); &add ("eax",&DWP(8+($i*16)+0,"esp")); &adc ("ebx",&DWP(8+($i*16)+4,"esp")); &mov (&DWP($i*16+0,"esi"),"eax"); &mov (&DWP($i*16+4,"esi"),"ebx"); &add ("ecx",&DWP(8+($i*16)+8,"esp")); &adc ("edx",&DWP(8+($i*16)+12,"esp")); &mov (&DWP($i*16+8,"esi"),"ecx"); &mov (&DWP($i*16+12,"esi"),"edx"); } &add ("esp",8*(9+16+80)); # destroy frame &sub ($K512,8*80); # rewind K &cmp ("edi",&DWP(8,"esp")); # are we done yet? &jb (&label("loop_x86")); &mov ("esp",&DWP(12,"esp")); # restore sp &function_end_A(); &set_label("K512",64); # Yes! I keep it in the code segment! &data_word(0xd728ae22,0x428a2f98); # u64 &data_word(0x23ef65cd,0x71374491); # u64 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64 &data_word(0x8189dbbc,0xe9b5dba5); # u64 &data_word(0xf348b538,0x3956c25b); # u64 &data_word(0xb605d019,0x59f111f1); # u64 &data_word(0xaf194f9b,0x923f82a4); # u64 &data_word(0xda6d8118,0xab1c5ed5); # u64 &data_word(0xa3030242,0xd807aa98); # u64 &data_word(0x45706fbe,0x12835b01); # u64 &data_word(0x4ee4b28c,0x243185be); # u64 &data_word(0xd5ffb4e2,0x550c7dc3); # u64 &data_word(0xf27b896f,0x72be5d74); # u64 &data_word(0x3b1696b1,0x80deb1fe); # u64 &data_word(0x25c71235,0x9bdc06a7); # u64 &data_word(0xcf692694,0xc19bf174); # u64 &data_word(0x9ef14ad2,0xe49b69c1); # u64 &data_word(0x384f25e3,0xefbe4786); # u64 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64 &data_word(0x77ac9c65,0x240ca1cc); # u64 &data_word(0x592b0275,0x2de92c6f); # u64 &data_word(0x6ea6e483,0x4a7484aa); # u64 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64 &data_word(0x831153b5,0x76f988da); # u64 &data_word(0xee66dfab,0x983e5152); # u64 &data_word(0x2db43210,0xa831c66d); # u64 &data_word(0x98fb213f,0xb00327c8); # u64 &data_word(0xbeef0ee4,0xbf597fc7); # u64 &data_word(0x3da88fc2,0xc6e00bf3); # u64 &data_word(0x930aa725,0xd5a79147); # u64 &data_word(0xe003826f,0x06ca6351); # u64 &data_word(0x0a0e6e70,0x14292967); # u64 &data_word(0x46d22ffc,0x27b70a85); # u64 &data_word(0x5c26c926,0x2e1b2138); # u64 &data_word(0x5ac42aed,0x4d2c6dfc); # u64 &data_word(0x9d95b3df,0x53380d13); # u64 &data_word(0x8baf63de,0x650a7354); # u64 &data_word(0x3c77b2a8,0x766a0abb); # u64 &data_word(0x47edaee6,0x81c2c92e); # u64 &data_word(0x1482353b,0x92722c85); # u64 &data_word(0x4cf10364,0xa2bfe8a1); # u64 &data_word(0xbc423001,0xa81a664b); # u64 &data_word(0xd0f89791,0xc24b8b70); # u64 &data_word(0x0654be30,0xc76c51a3); # u64 &data_word(0xd6ef5218,0xd192e819); # u64 &data_word(0x5565a910,0xd6990624); # u64 &data_word(0x5771202a,0xf40e3585); # u64 &data_word(0x32bbd1b8,0x106aa070); # u64 &data_word(0xb8d2d0c8,0x19a4c116); # u64 &data_word(0x5141ab53,0x1e376c08); # u64 &data_word(0xdf8eeb99,0x2748774c); # u64 &data_word(0xe19b48a8,0x34b0bcb5); # u64 &data_word(0xc5c95a63,0x391c0cb3); # u64 &data_word(0xe3418acb,0x4ed8aa4a); # u64 &data_word(0x7763e373,0x5b9cca4f); # u64 &data_word(0xd6b2b8a3,0x682e6ff3); # u64 &data_word(0x5defb2fc,0x748f82ee); # u64 &data_word(0x43172f60,0x78a5636f); # u64 &data_word(0xa1f0ab72,0x84c87814); # u64 &data_word(0x1a6439ec,0x8cc70208); # u64 &data_word(0x23631e28,0x90befffa); # u64 &data_word(0xde82bde9,0xa4506ceb); # u64 &data_word(0xb2c67915,0xbef9a3f7); # u64 &data_word(0xe372532b,0xc67178f2); # u64 &data_word(0xea26619c,0xca273ece); # u64 &data_word(0x21c0c207,0xd186b8c7); # u64 &data_word(0xcde0eb1e,0xeada7dd6); # u64 &data_word(0xee6ed178,0xf57d4f7f); # u64 &data_word(0x72176fba,0x06f067aa); # u64 &data_word(0xa2c898a6,0x0a637dc5); # u64 &data_word(0xbef90dae,0x113f9804); # u64 &data_word(0x131c471b,0x1b710b35); # u64 &data_word(0x23047d84,0x28db77f5); # u64 &data_word(0x40c72493,0x32caab7b); # u64 &data_word(0x15c9bebc,0x3c9ebe0a); # u64 &data_word(0x9c100d4c,0x431d67c4); # u64 &data_word(0xcb3e42b6,0x4cc5d4be); # u64 &data_word(0xfc657e2a,0x597f299c); # u64 &data_word(0x3ad6faec,0x5fcb6fab); # u64 &data_word(0x4a475817,0x6c44198c); # u64 &data_word(0x04050607,0x00010203); # byte swap &data_word(0x0c0d0e0f,0x08090a0b); # mask &function_end_B("sha512_block_data_order"); &asciz("SHA512 block transform for x86, CRYPTOGAMS by "); &asm_finish(); close STDOUT;