/* * * ec_point.c * * Elliptic Curve Arithmetic Functions * * Copyright (C) Lenka Fibikova 2000 * * */ #include #include #include #include #include #include "bn_modfs.h" #include "bn_mont2.h" #include "ec.h" EC_POINT *ECP_new() { EC_POINT *ret; ret=(EC_POINT *)malloc(sizeof(EC_POINT)); if (ret == NULL) return NULL; ret->X = BN_new(); ret->Y = BN_new(); ret->Z = BN_new(); ret->is_in_mont = 0; if (ret->X == NULL || ret->Y == NULL || ret->Z == NULL) { if (ret->X != NULL) BN_free(ret->X); if (ret->Y != NULL) BN_free(ret->Y); if (ret->Z != NULL) BN_free(ret->Z); free(ret); return(NULL); } return(ret); } void ECP_clear_free(EC_POINT *P) { if (P == NULL) return; P->is_in_mont = 0; if (P->X != NULL) BN_clear_free(P->X); if (P->Y != NULL) BN_clear_free(P->Y); if (P->Z != NULL) BN_clear_free(P->Z); free(P); } void ECP_clear_free_precompute(ECP_PRECOMPUTE *prec) { int i; int max; if (prec == NULL) return; if (prec->Pi != NULL) { max = 1; max <<= (prec->r - 1); for (i = 0; i < max; i++) { if (prec->Pi[i] != NULL) ECP_clear_free(prec->Pi[i]); } } free(prec); } int ECP_is_on_ec(EC_POINT *P, EC *E, BN_CTX *ctx) { BIGNUM *n0, *n1, *n2, *p; int Pnorm; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL); assert(ctx != NULL); assert(!P->is_in_mont); if (ECP_is_infty(P)) return 1; n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; ctx->tos += 3; p = E->p; Pnorm = (ECP_is_norm(P)); if (!Pnorm) { if (!BN_mod_mul(n0, P->Z, P->Z, p, ctx)) goto err; if (!BN_mod_mul(n1, n0, n0, p, ctx)) goto err; if (!BN_mod_mul(n2, n0, n1, p, ctx)) goto err; } if (!BN_mod_mul(n0, P->X, P->X, p, ctx)) goto err; if (!BN_mod_mul(n0, n0, P->X, p, ctx)) goto err; if (Pnorm) { if (!BN_mod_mul(n1, P->X, E->A, p, ctx)) goto err; } else { if (!BN_mod_mul(n1, n1, P->X, p, ctx)) goto err; if (!BN_mod_mul(n1, n1, E->A, p, ctx)) goto err; } if (!BN_mod_add(n0, n0, n1, p, ctx)) goto err; if (Pnorm) { if (!BN_mod_add(n0, n0, E->B, p, ctx)) goto err; } else { if (!BN_mod_mul(n2, n2, E->B, p, ctx)) goto err; if (!BN_mod_add(n0, n0, n2, p, ctx)) goto err; } if (!BN_mod_mul(n1, P->Y, P->Y, p, ctx)) goto err; if (BN_cmp(n0, n1)) { ctx->tos -= 3; return 0; } ctx->tos -= 3; return 1; err: ctx->tos -= 3; return -1; } EC_POINT *ECP_generate(BIGNUM *x, BIGNUM *z,EC *E, BN_CTX *ctx) /* x == NULL || z = 0 -> point of infinity */ /* z == NULL || z = 1 -> normalized */ { BIGNUM *n0, *n1; EC_POINT *ret; int Pnorm, Pinfty, X0, A0; assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(ctx != NULL); Pinfty = (x == NULL); Pnorm = (z == NULL); if (!Pnorm) { Pnorm = BN_is_one(z); Pinfty = (Pinfty || BN_is_zero(z)); } if (Pinfty) { if ((ret = ECP_new()) == NULL) return NULL; if (!BN_zero(ret->Z)) { ECP_clear_free(ret); return NULL; } return ret; } X0 = BN_is_zero(x); A0 = BN_is_zero(E->A); if ((ret = ECP_new()) == NULL) return NULL; ret->is_in_mont = 0; n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; if (!BN_zero(n0)) return NULL; if (!BN_zero(n1)) return NULL; ctx->tos += 2; if (!X0) { if (!BN_mod_sqr(n0, x, E->p, ctx)) goto err; if (!BN_mod_mul(n0, n0, x, E->p, ctx)) goto err; /* x^3 */ } if (!X0 && !A0) { if (!BN_mod_mul(n1, E->A, x, E->p, ctx)) goto err; /* Ax */ if (!BN_mod_add(n0, n0, n1, E->p, ctx)) goto err; /* x^3 + Ax */ } if (!BN_is_zero(E->B)) if (!BN_mod_add(n0, n0, E->B, E->p, ctx)) goto err; /* x^3 + Ax +B */ if (!BN_mod_sqrt(ret->Y, n0, E->p, ctx)) goto err; if (BN_copy(ret->X, x) == NULL) goto err; if (Pnorm) { if (!BN_one(ret->Z)) goto err; } else { if (BN_copy(ret->Z, z) == NULL) goto err; if (!BN_mod_sqr(n0, z, E->p, ctx)) goto err; if (!BN_mod_mul(ret->X, ret->X, n0, E->p, ctx)) goto err; if (!BN_mod_mul(n0, n0, z, E->p, ctx)) goto err; if (!BN_mod_mul(ret->Y, ret->Y, n0, E->p, ctx)) goto err; } #ifdef TEST if (!ECP_is_on_ec(ret, E, ctx)) goto err; #endif ctx->tos -= 2; return ret; err: if (ret != NULL) ECP_clear_free(ret); ctx->tos -= 2; return NULL; } int ECP_ecp2bin(EC_POINT *P, unsigned char *to, int form) /* form = 1 ... compressed 2 ... uncompressed 3 ... hybrid */ { int bytes, bx, by; assert (P != NULL); assert (P->X != NULL && P->Y != NULL && P->Z != NULL); assert (!P->is_in_mont); assert (ECP_is_norm(P) || ECP_is_infty(P)); assert (to != NULL); assert (form > 0 && form < 4); if (BN_is_zero(P->Z)) { to[0] = 0; return 1; } bx = BN_num_bytes(P->X); if (form == 1 ) bytes = bx + 1; else { by = BN_num_bytes(P->Y); bytes = (bx > by ? bx : by); bytes = bytes * 2 + 1; } memset(to, 0, bytes); switch (form) { case 1: to[0] = 2; break; case 2: to[0] = 4; break; case 3: to[0] = 6; break; } if (form != 2) to[0] += BN_is_bit_set(P->Y, 0); if ((BN_bn2bin(P->X, to + 1)) != bx) return 0; if (form != 1) { if ((BN_bn2bin(P->Y, to + bx + 1)) != by) return 0; } return bytes; } int ECP_bin2ecp(unsigned char *from, int len, EC_POINT *P, EC *E, BN_CTX *ctx) { int y; BIGNUM *x; EC_POINT *pp; assert (E != NULL); assert (E->A != NULL && E->B != NULL && E->p != NULL); assert (!E->is_in_mont); assert (ctx != NULL); assert (from != NULL); assert (P != NULL); assert (P->X != NULL && P->Y != NULL && P->Z != NULL); if (len == 1 && from[0] != 0) return 0; if (len == 0 || len == 1) { if (!BN_zero(P->Z)) return 0; return 1; } switch (from[0]) { case 2: case 3: y = from[0] - 2; if ((x = BN_new()) == NULL) return 0; if (BN_bin2bn(from + 1, len - 1, x) == NULL) return 0; pp = ECP_generate(x, NULL, E, ctx); BN_clear_free(x); if (pp == NULL) return 0; ECP_copy(P, pp); ECP_clear_free(pp); if (BN_is_bit_set(P->Y, 0) != y) if (!BN_sub(P->Y, E->p, P->Y)) return 0; break; case 4: case 6: case 7: y = (len - 1)/2; if (BN_bin2bn(from + 1, y, P->X) == NULL) return 0; if (BN_bin2bn(from + y + 1, y, P->Y) == NULL) return 0; if (!BN_set_word(P->Z, 1)) return 0; break; default: assert(0); } if (!ECP_is_on_ec(P, E, ctx)) return 0; return 1; } int ECP_normalize(EC_POINT *P, EC *E, BN_CTX *ctx) { BIGNUM *z, *zm; assert (P != NULL); assert (P->X != NULL && P->Y != NULL && P->Z != NULL); assert (E != NULL); assert (E->A != NULL && E->B != NULL && E->p != NULL); assert (ctx != NULL); if (ECP_is_norm(P)) return 1; if (ECP_is_infty(P)) return 0; if ((zm = BN_mod_inverse(P->Z, P->Z, E->p, ctx)) == NULL) return 0; assert(!P->is_in_mont); z = ctx->bn[ctx->tos]; ctx->tos++; if (!BN_mod_mul(z, zm, zm, E->p, ctx)) goto err; if (!BN_mod_mul(P->X, P->X, z, E->p, ctx)) goto err; if (!BN_mod_mul(z, z, zm, E->p, ctx)) goto err; if (!BN_mod_mul(P->Y, P->Y, z, E->p, ctx)) goto err; if (!BN_one(P->Z)) goto err; if (zm != NULL) BN_clear_free(zm); ctx->tos--; return 1; err: if (zm != NULL) BN_clear_free(zm); ctx->tos--; return 0; } int ECP_copy(EC_POINT *R, EC_POINT *P) { assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); if (BN_copy(R->X, P->X) == NULL) return 0; if (BN_copy(R->Y, P->Y) == NULL) return 0; if (BN_copy(R->Z, P->Z) == NULL) return 0; R->is_in_mont = P->is_in_mont; return 1; } EC_POINT *ECP_dup(EC_POINT *P) { EC_POINT *ret; ret = ECP_new(); if (ret == NULL) return NULL; if (!ECP_copy(ret, P)) { ECP_clear_free(ret); return(NULL); } return(ret); } EC_POINT *ECP_minus(EC_POINT *P, BIGNUM *p) /* mont || non-mont */ { EC_POINT *ret; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(p != NULL); assert(BN_cmp(P->Y, p) < 0); ret = ECP_dup(P); if (ret == NULL) return NULL; if (BN_is_zero(ret->Y)) return ret; if (!BN_sub(ret->Y, p, ret->Y)) { ECP_clear_free(ret); return NULL; } return ret; } #ifdef SIMPLE int ECP_cmp(EC_POINT *P, EC_POINT *Q, BIGNUM *p, BN_CTX *ctx) /* return values: -2 ... error 0 ... P = Q -1 ... P = -Q 1 ... else */ { BIGNUM *n0, *n1, *n2, *n3, *n4; int Pnorm, Qnorm; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(Q != NULL); assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL); assert(p != NULL); assert(ctx != NULL); assert(!P->is_in_mont); assert(!Q->is_in_mont); if (ECP_is_infty(P) && ECP_is_infty(Q)) return 0; if (ECP_is_infty(P) || ECP_is_infty(Q)) return 1; Pnorm = (ECP_is_norm(P)); Qnorm = (ECP_is_norm(Q)); n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; n4 = ctx->bn[ctx->tos + 4]; ctx->tos += 5; if (Qnorm) { if (BN_copy(n1, P->X) == NULL) goto err; /* L1 = x_p */ if (BN_copy(n2, P->Y) == NULL) goto err; /* L2 = y_p */ } else { if (!BN_sqr(n0, Q->Z, ctx)) goto err; if (!BN_mod_mul(n1, P->X, n0, p, ctx)) goto err; /* L1 = x_p * z_q^2 */ if (!BN_mod_mul(n0, n0, Q->Z, p, ctx)) goto err; if (!BN_mod_mul(n2, P->Y, n0, p, ctx)) goto err; /* L2 = y_p * z_q^3 */ } if (Pnorm) { if (BN_copy(n3, Q->X) == NULL) goto err; /* L3 = x_q */ if (BN_copy(n4, Q->Y) == NULL) goto err; /* L4 = y_q */ } else { if (!BN_sqr(n0, P->Z, ctx)) goto err; if (!BN_mod_mul(n3, Q->X, n0, p, ctx)) goto err; /* L3 = x_q * z_p^2 */ if (!BN_mod_mul(n0, n0, P->Z, p, ctx)) goto err; if (!BN_mod_mul(n4, Q->Y, n0, p, ctx)) goto err; /* L4 = y_q * z_p^3 */ } if (!BN_mod_sub(n0, n1, n3, p, ctx)) goto err; /* L5 = L1 - L3 */ if (!BN_is_zero(n0)) { ctx->tos -= 5; return 1; } if (!BN_mod_sub(n0, n2, n4, p, ctx)) goto err; /* L6 = L2 - L4 */ if (!BN_is_zero(n0)) { ctx->tos -= 5; return -1; } ctx->tos -= 5; return 0; err: ctx->tos -= 5; return -2; } int ECP_double(EC_POINT *R, EC_POINT *P, EC *E, BN_CTX *ctx) /* R <- 2P (on E) */ { BIGNUM *n0, *n1, *n2, *n3, *p; int Pnorm, A0; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(ctx != NULL); assert(!P->is_in_mont); if (ECP_is_infty(P)) { if (!BN_zero(R->Z)) return 0; return 1; } Pnorm = (ECP_is_norm(P)); A0 = (BN_is_zero(E->A)); n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; ctx->tos += 4; p = E->p; /* L1 */ if (Pnorm || A0) { if (!BN_mod_sqr(n1, P->X, p, ctx)) goto err; if (!BN_mul_word(n1, 3)) goto err; if (!A0) /* if A = 0: L1 = 3 * x^2 + a * z^4 = 3 * x ^2 */ if (!BN_mod_add(n1, n1, E->A, p, ctx)) goto err; /* L1 = 3 * x^2 + a * z^4 = 3 * x^2 + a */ } else { if (!BN_mod_sqr(n0, P->Z, p, ctx)) goto err; if (!BN_mod_mul(n0, n0, n0, p, ctx)) goto err; if (!BN_mod_mul(n0, n0, E->A, p, ctx)) goto err; if (!BN_mod_sqr(n1, P->X, p, ctx)) goto err; if (!BN_mul_word(n1, 3)) goto err; if (!BN_mod_add(n1, n1, n0, p, ctx)) goto err; /* L1 = 3 * x^2 + a * z^4 */ } /* Z */ if (Pnorm) { if (BN_copy(n0, P->Y) == NULL) goto err; } else { if (!BN_mod_mul(n0, P->Y, P->Z, p, ctx)) goto err; } if (!BN_lshift1(n0, n0)) goto err; if (!BN_smod(R->Z, n0, p, ctx)) goto err; /* Z = 2 * y * z */ /* L2 */ if (!BN_mod_sqr(n3, P->Y, p, ctx)) goto err; if (!BN_mod_mul(n2, P->X, n3, p, ctx)) goto err; if (!BN_lshift(n2, n2, 2)) goto err; if (!BN_smod(n2, n2, p, ctx)) goto err; /* L2 = 4 * x * y^2 */ /* X */ if (!BN_lshift1(n0, n2)) goto err; if (!BN_mod_sqr(R->X, n1, p, ctx)) goto err; if (!BN_mod_sub(R->X, R->X, n0, p, ctx)) goto err; /* X = L1^2 - 2 * L2 */ /* L3 */ if (!BN_mod_sqr(n0, n3, p, ctx)) goto err; if (!BN_lshift(n3, n0, 3)) goto err; if (!BN_smod(n3, n3, p, ctx)) goto err; /* L3 = 8 * y^4 */ /* Y */ if (!BN_mod_sub(n0, n2, R->X, p, ctx)) goto err; if (!BN_mod_mul(n0, n1, n0, p, ctx)) goto err; if (!BN_mod_sub(R->Y, n0, n3, p, ctx)) goto err; /* Y = L1 * (L2 - X) - L3 */ #ifdef TEST if (!ECP_is_on_ec(R, E, ctx)) return 0; #endif ctx->tos -= 4; return 1; err: ctx->tos -= 4; return 0; } int ECP_add(EC_POINT *R, EC_POINT *P, EC_POINT *Q, EC *E, BN_CTX *ctx) /* R <- P + Q (on E) */ { BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6, *p; int Pnorm, Qnorm; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(Q != NULL); assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL); assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(!BN_is_zero(E->h));; assert(ctx != NULL); assert(!P->is_in_mont); assert(!Q->is_in_mont); if (P == Q) return ECP_double(R, P, E, ctx); if (ECP_is_infty(P)) return ECP_copy(R, Q); if (ECP_is_infty(Q)) return ECP_copy(R, P); Pnorm = (ECP_is_norm(P)); Qnorm = (ECP_is_norm(Q)); n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; n4 = ctx->bn[ctx->tos + 4]; n5 = ctx->bn[ctx->tos + 5]; n6 = ctx->bn[ctx->tos + 6]; ctx->tos += 7; p = E->p; /* L1; L2 */ if (Qnorm) { if (BN_copy(n1, P->X) == NULL) goto err; /* L1 = x_p */ if (BN_copy(n2, P->Y) == NULL) goto err; /* L2 = y_p */ } else { if (!BN_sqr(n0, Q->Z, ctx)) goto err; if (!BN_mod_mul(n1, P->X, n0, p, ctx)) goto err; /* L1 = x_p * z_q^2 */ if (!BN_mod_mul(n0, n0, Q->Z, p, ctx)) goto err; if (!BN_mod_mul(n2, P->Y, n0, p, ctx)) goto err; /* L2 = y_p * z_q^3 */ } /* L3; L4 */ if (Pnorm) { if (BN_copy(n3, Q->X) == NULL) goto err; /* L3 = x_q */ if (BN_copy(n4, Q->Y) == NULL) goto err; /* L4 = y_q */ } else { if (!BN_sqr(n0, P->Z, ctx)) goto err; if (!BN_mod_mul(n3, Q->X, n0, p, ctx)) goto err; /* L3 = x_q * z_p^2 */ if (!BN_mod_mul(n0, n0, P->Z, p, ctx)) goto err; if (!BN_mod_mul(n4, Q->Y, n0, p, ctx)) goto err; /* L4 = y_q * z_p^3 */ } /* L5; L6 */ if (!BN_mod_sub(n5, n1, n3, p, ctx)) goto err; /* L5 = L1 - L3 */ if (!BN_mod_sub(n6, n2, n4, p, ctx)) goto err; /* L6 = L2 - L4 */ /* pata */ if (BN_is_zero(n5)) { if (BN_is_zero(n6)) /* P = Q => P + Q = 2P */ { ctx->tos -= 7; return ECP_double(R, P, E, ctx); } else /* P = -Q => P + Q = \infty */ { ctx->tos -= 7; if (!BN_zero(R->Z)) return 0; return 1; } } /* L7; L8 */ if (!BN_mod_add(n1, n1, n3, p, ctx)) goto err; /* L7 = L1 + L3 */ if (!BN_mod_add(n2, n2, n4, p, ctx)) goto err; /* L8 = L2 + L4 */ /* Z */ if (Pnorm) { if (BN_copy(n0, Q->Z) == NULL) goto err; } else { if (!BN_mod_mul(n0, P->Z, Q->Z, p, ctx)) goto err; } if (!BN_mod_mul(R->Z, n0, n5, p, ctx)) goto err; /* Z = z_p * z_q * L_5 */ /* X */ if (!BN_mod_sqr(n0, n6, p, ctx)) goto err; if (!BN_mod_sqr(n4, n5, p, ctx)) goto err; if (!BN_mod_mul(n3, n1, n4, p, ctx)) goto err; if (!BN_mod_sub(R->X, n0, n3, p, ctx)) goto err; /* X = L6^2 - L5^2 * L7 */ /* L9 */ if (!BN_lshift1(n0, R->X)) goto err; if (!BN_mod_sub(n0, n3, n0, p, ctx)) goto err; /* L9 = L5^2 * L7 - 2X */ /* Y */ if (!BN_mod_mul(n0, n0, n6, p, ctx)) goto err; if (!BN_mod_mul(n5, n4, n5, p, ctx)) goto err; if (!BN_mod_mul(n1, n2, n5, p, ctx)) goto err; if (!BN_mod_sub(n0, n0, n1, p, ctx)) goto err; if (!BN_mod_mul(R->Y, n0, E->h, p, ctx)) goto err; /* Y = (L6 * L9 - L8 * L5^3) / 2 */ #ifdef TEST if (!ECP_is_on_ec(R, E, ctx)) return 0; #endif ctx->tos -= 7; return 1; err: ctx->tos -= 7; return 0; } ECP_PRECOMPUTE *ECP_precompute(int r, EC_POINT *P, EC *E, BN_CTX *ctx) { ECP_PRECOMPUTE *ret; EC_POINT *P2; int i, max; assert(r > 2); assert(!P->is_in_mont); assert(!E->is_in_mont); ret=(ECP_PRECOMPUTE *)malloc(sizeof(ECP_PRECOMPUTE)); if (ret == NULL) return NULL; max = 1; max <<= (r - 1); ret->r = 0; ret->Pi=(EC_POINT **)malloc(sizeof(EC_POINT *) * max); if (ret->Pi == NULL) goto err; /* P2 = [2]P */ if ((P2 = ECP_new()) == NULL) goto err; if (!ECP_double(P2, P, E, ctx)) goto err; /* P_0 = P */ if((ret->Pi[0] = ECP_dup(P)) == NULL) goto err; /* P_i = P_(i-1) + P2 */ for (i = 1; i < max; i++) { if ((ret->Pi[i] = ECP_new()) == NULL) goto err; if (!ECP_add(ret->Pi[i], P2, ret->Pi[i - 1], E, ctx)) goto err; } ret->r = r; ECP_clear_free(P2); return ret; err: ECP_clear_free(P2); ECP_clear_free_precompute(ret); return NULL; } int ECP_multiply(EC_POINT *R, BIGNUM *k, ECP_PRECOMPUTE *prec, EC *E, BN_CTX *ctx) /* R = [k]P */ { int j; int t, nextw, h, r; assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(k != NULL); assert(!k->neg); assert(ctx != NULL); assert(prec != NULL); assert(!E->is_in_mont); if (BN_is_zero(k)) { if (!BN_zero(R->Z)) return 0; R->is_in_mont = 0; return 1; } j = BN_num_bits(k); j--; r = prec->r; if (!BN_zero(R->Z)) return 0; R->is_in_mont = 0; while(j >= 0) { if (!BN_is_bit_set(k, j)) { if (!ECP_double(R, R, E, ctx)) return 0; j--; } else { nextw = j - r; if (nextw < -1) nextw = -1; t = nextw + 1; while(!BN_is_bit_set(k, t)) { t++; } if (!ECP_double(R, R, E, ctx)) return 0; j--; if (j < t) h = 0; else { h = 1; for(; j > t; j--) { h <<= 1; if (BN_is_bit_set(k, j)) h++; if (!ECP_double(R, R, E, ctx)) return 0; } if (!ECP_double(R, R, E, ctx)) return 0; j--; } if (!ECP_add(R, R, prec->Pi[h], E, ctx)) return 0; for (; j > nextw; j--) { if (!ECP_double(R, R, E, ctx)) return 0; } } } return 1; } #endif /* SIMPLE */ #ifdef MONTGOMERY int ECP_to_montgomery(EC_POINT *P, BN_MONTGOMERY *mont, BN_CTX *ctx) { assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(mont != NULL); assert(mont->p != NULL); assert(ctx != NULL); if (P->is_in_mont) return 1; if (!BN_lshift(P->X, P->X, mont->R_num_bits)) return 0; if (!BN_mod(P->X, P->X, mont->p, ctx)) return 0; if (!BN_lshift(P->Y, P->Y, mont->R_num_bits)) return 0; if (!BN_mod(P->Y, P->Y, mont->p, ctx)) return 0; if (!BN_lshift(P->Z, P->Z, mont->R_num_bits)) return 0; if (!BN_mod(P->Z, P->Z, mont->p, ctx)) return 0; P->is_in_mont = 1; return 1; } int ECP_from_montgomery(EC_POINT *P, BN_MONTGOMERY *mont, BN_CTX *ctx) { assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(mont != NULL); assert(mont->p != NULL); assert(ctx != NULL); if (!P->is_in_mont) return 1; if (!BN_mont_red(P->X, mont, ctx)) return 0; if (!BN_mont_red(P->Y, mont, ctx)) return 0; if (!BN_mont_red(P->Z, mont, ctx)) return 0; P->is_in_mont = 0; return 1; } int ECP_mont_cmp(EC_POINT *P, EC_POINT *Q, BN_MONTGOMERY *mont, BN_CTX *ctx) /* return values: -2 ... error 0 ... P = Q -1 ... P = -Q 1 ... else */ { BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *p; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(Q != NULL); assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL); assert(mont != NULL); assert(mont->p != NULL); assert(ctx != NULL); if (!P->is_in_mont) if (!ECP_to_montgomery(P, mont, ctx)) return 0; if (!Q->is_in_mont) if (!ECP_to_montgomery(Q, mont, ctx)) return 0; if (ECP_is_infty(P) && ECP_is_infty(Q)) return 0; if (ECP_is_infty(P) || ECP_is_infty(Q)) return 1; n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; n4 = ctx->bn[ctx->tos + 4]; n5 = ctx->bn[ctx->tos + 5]; ctx->tos += 6; p = mont->p; if (!BN_mont_mod_mul(n5, Q->Z, Q->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n1, P->X, n5, mont, ctx)) goto err; /* L1 = x_p * z_q^2 */ if (!BN_mont_mod_mul(n0, n5, Q->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n2, P->Y, n0, mont, ctx)) goto err; /* L2 = y_p * z_q^3 */ if (!BN_mont_mod_mul(n5, P->Z, P->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n3, Q->X, n5, mont, ctx)) goto err; /* L3 = x_q * z_p^2 */ if (!BN_mont_mod_mul(n0, n5, P->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n4, Q->Y, n0, mont, ctx)) goto err; /* L4 = y_q * z_p^3 */ if (!BN_mod_sub_quick(n0, n1, n3, p)) goto err; /* L5 = L1 - L3 */ if (!BN_is_zero(n0)) { ctx->tos -= 6; return 1; } if (!BN_mod_sub_quick(n0, n2, n4, p)) goto err; /* L6 = L2 - L4 */ if (!BN_is_zero(n0)) { ctx->tos -= 6; return -1; } ctx->tos -= 6; return 0; err: ctx->tos -= 6; return -2; } int ECP_mont_double(EC_POINT *R, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx) /* R <- 2P (on E) */ { BIGNUM *n0, *n1, *n2, *n3, *p; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(ctx != NULL); if (!P->is_in_mont) if (!ECP_to_montgomery(P, mont, ctx)) return 0; if (!E->is_in_mont) if (!EC_to_montgomery(E, mont, ctx)) return 0; R->is_in_mont = 1; if (ECP_is_infty(P)) { if (!BN_zero(R->Z)) return 0; return 1; } n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; ctx->tos += 4; p = E->p; /* L1 */ if (!BN_mont_mod_mul(n0, P->Z, P->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n2, n0, n0, mont, ctx)) goto err; if (!BN_mont_mod_mul(n0, n2, E->A, mont, ctx)) goto err; if (!BN_mont_mod_mul(n1, P->X, P->X, mont, ctx)) goto err; if (!BN_mod_lshift1_quick(n2, n1, p)) goto err; if (!BN_mod_add_quick(n1, n1, n2, p)) goto err; if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; /* L1 = 3 * x^2 + a * z^4 */ /* Z */ if (!BN_mont_mod_mul(n0, P->Y, P->Z, mont, ctx)) goto err; if (!BN_mod_lshift1_quick(R->Z, n0, p)) goto err; /* Z = 2 * y * z */ /* L2 */ if (!BN_mont_mod_mul(n3, P->Y, P->Y, mont, ctx)) goto err; if (!BN_mont_mod_mul(n2, P->X, n3, mont, ctx)) goto err; if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; /* L2 = 4 * x * y^2 */ /* X */ if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; if (!BN_mont_mod_mul(R->X, n1, n1, mont, ctx)) goto err; if (!BN_mod_sub_quick(R->X, R->X, n0, p)) goto err; /* X = L1^2 - 2 * L2 */ /* L3 */ if (!BN_mont_mod_mul(n0, n3, n3, mont, ctx)) goto err; if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; /* L3 = 8 * y^4 */ /* Y */ if (!BN_mod_sub_quick(n2, n2, R->X, p)) goto err; if (!BN_mont_mod_mul(n0, n1, n2, mont, ctx)) goto err; if (!BN_mod_sub_quick(R->Y, n0, n3, p)) goto err; /* Y = L1 * (L2 - X) - L3 */ ctx->tos -= 4; return 1; err: ctx->tos -= 4; return 0; } int ECP_mont_add(EC_POINT *R, EC_POINT *P, EC_POINT *Q, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx) /* R <- P + Q (on E) */ { BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6, *p; assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(Q != NULL); assert(Q->X != NULL && Q->Y != NULL && Q->Z != NULL); assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(!BN_is_zero(E->h));; assert(ctx != NULL); if (!Q->is_in_mont) if (!ECP_to_montgomery(Q, mont, ctx)) return 0; if (!P->is_in_mont) if (!ECP_to_montgomery(P, mont, ctx)) return 0; if (!E->is_in_mont) if (!EC_to_montgomery(E, mont, ctx)) return 0; if (P == Q) return ECP_mont_double(R, P, E, mont, ctx); if (ECP_is_infty(P)) return ECP_copy(R, Q); if (ECP_is_infty(Q)) return ECP_copy(R, P); n0 = ctx->bn[ctx->tos]; n1 = ctx->bn[ctx->tos + 1]; n2 = ctx->bn[ctx->tos + 2]; n3 = ctx->bn[ctx->tos + 3]; n4 = ctx->bn[ctx->tos + 4]; n5 = ctx->bn[ctx->tos + 5]; n6 = ctx->bn[ctx->tos + 6]; ctx->tos += 7; p = E->p; R->is_in_mont = 1; /* L1; L2 */ if (!BN_mont_mod_mul(n6, Q->Z, Q->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n1, P->X, n6, mont, ctx)) goto err; /* L1 = x_p * z_q^2 */ if (!BN_mont_mod_mul(n0, n6, Q->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n2, P->Y, n0, mont, ctx)) goto err; /* L2 = y_p * z_q^3 */ /* L3; L4 */ if (!BN_mont_mod_mul(n6, P->Z, P->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n3, Q->X, n6, mont, ctx)) goto err; /* L3 = x_q * z_p^2 */ if (!BN_mont_mod_mul(n0, n6, P->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(n4, Q->Y, n0, mont, ctx)) goto err; /* L4 = y_q * z_p^3 */ /* L5; L6 */ if (!BN_mod_sub_quick(n5, n1, n3, p)) goto err; /* L5 = L1 - L3 */ if (!BN_mod_sub_quick(n6, n2, n4, p)) goto err; /*L6 = L2 - L4 */ /* pata */ if (BN_is_zero(n5)) { if (BN_is_zero(n6)) /* P = Q => P + Q = 2P */ { ctx->tos -= 7; return ECP_mont_double(R, P, E, mont, ctx); } else /* P = -Q => P + Q = \infty */ { ctx->tos -= 7; if (!BN_zero(R->Z)) return 0; return 1; } } /* L7; L8 */ if (!BN_mod_add_quick(n1, n1, n3, p)) goto err; /* L7 = L1 + L3 */ if (!BN_mod_add_quick(n2, n2, n4, p)) goto err; /* L8 = L2 + L4 */ /* Z */ if (!BN_mont_mod_mul(n0, P->Z, Q->Z, mont, ctx)) goto err; if (!BN_mont_mod_mul(R->Z, n0, n5, mont, ctx)) goto err; /* Z = z_p * z_q * L_5 */ /* X */ if (!BN_mont_mod_mul(n0, n6, n6, mont, ctx)) goto err; if (!BN_mont_mod_mul(n4, n5, n5, mont, ctx)) goto err; if (!BN_mont_mod_mul(n3, n1, n4, mont, ctx)) goto err; if (!BN_mod_sub_quick(R->X, n0, n3, p)) goto err; /* X = L6^2 - L5^2 * L7 */ /* L9 */ if (!BN_mod_lshift1_quick(n0, R->X, p)) goto err; if (!BN_mod_sub_quick(n3, n3, n0, p)) goto err; /* L9 = L5^2 * L7 - 2X */ /* Y */ if (!BN_mont_mod_mul(n0, n3, n6, mont, ctx)) goto err; if (!BN_mont_mod_mul(n6, n4, n5, mont, ctx)) goto err; if (!BN_mont_mod_mul(n1, n2, n6, mont, ctx)) goto err; if (!BN_mod_sub_quick(n0, n0, n1, p)) goto err; if (!BN_mont_mod_mul(R->Y, n0, E->h, mont, ctx)) goto err; /* Y = (L6 * L9 - L8 * L5^3) / 2 */ ctx->tos -= 7; return 1; err: ctx->tos -= 7; return 0; } ECP_PRECOMPUTE *ECP_mont_precompute(int r, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx) { ECP_PRECOMPUTE *ret; EC_POINT *P2; int i, max; assert(r > 2); assert(r < sizeof(unsigned int) * 8 - 1); assert(mont != NULL); assert(mont->p != NULL); if (!P->is_in_mont) if (!ECP_to_montgomery(P, mont, ctx)) return 0; if (!E->is_in_mont) if (!EC_to_montgomery(E, mont, ctx)) return 0; ret=(ECP_PRECOMPUTE *)malloc(sizeof(ECP_PRECOMPUTE)); if (ret == NULL) return NULL; max = 1; max <<= (r - 1); ret->r = 0; ret->Pi=(EC_POINT **)malloc(sizeof(EC_POINT *) * max); if (ret->Pi == NULL) goto err; /* P2 = [2]P */ if ((P2 = ECP_new()) == NULL) goto err; if (!ECP_mont_double(P2, P, E, mont, ctx)) goto err; /* P_0 = P */ if((ret->Pi[0] = ECP_dup(P)) == NULL) goto err; /* P_i = P_(i-1) + P2 */ for (i = 1; i < max; i++) { if ((ret->Pi[i] = ECP_new()) == NULL) goto err; if (!ECP_mont_add(ret->Pi[i], P2, ret->Pi[i - 1], E, mont, ctx)) goto err; } ret->r = r; ECP_clear_free(P2); return ret; err: ECP_clear_free(P2); ECP_clear_free_precompute(ret); return NULL; } int ECP_mont_multiply(EC_POINT *R, BIGNUM *k, ECP_PRECOMPUTE *prec, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx) /* R = [k]P P = prec->Pi[0]*/ { int j; int t, nextw, h, r; assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(k != NULL); assert(!k->neg); assert(ctx != NULL); assert(prec != NULL); assert(mont != NULL); assert(mont->p != NULL); if (!E->is_in_mont) if (!EC_to_montgomery(E, mont, ctx)) return 0; if (BN_is_zero(k)) { if (!BN_zero(R->Z)) return 0; R->is_in_mont = 1; return 1; } j = BN_num_bits(k); j--; r = prec->r; if (!BN_zero(R->Z)) return 0; R->is_in_mont = 1; while(j >= 0) { if (!BN_is_bit_set(k, j)) { if (!ECP_mont_double(R, R, E, mont, ctx)) return 0; j--; } else { nextw = j - r; if (nextw < -1) nextw = -1; t = nextw + 1; while(!BN_is_bit_set(k, t)) { t++; } if (!ECP_mont_double(R, R, E, mont, ctx)) return 0; j--; if (j < t) h = 0; else { h = 1; for(; j > t; j--) { h <<= 1; if (BN_is_bit_set(k, j)) h++; if (!ECP_mont_double(R, R, E, mont, ctx)) return 0; } if (!ECP_mont_double(R, R, E, mont, ctx)) return 0; j--; } if (!ECP_mont_add(R, R, prec->Pi[h], E, mont, ctx)) return 0; for (; j > nextw; j--) { if (!ECP_mont_double(R, R, E, mont, ctx)) return 0; } } } return 1; } int ECP_mont_multiply2(EC_POINT *R, BIGNUM *k, EC_POINT *P, EC *E, BN_MONTGOMERY *mont, BN_CTX *ctx) /* R = [k]P */ { int j, hj, kj; BIGNUM *h; EC_POINT *mP; assert(R != NULL); assert(R->X != NULL && R->Y != NULL && R->Z != NULL); assert(P != NULL); assert(P->X != NULL && P->Y != NULL && P->Z != NULL); assert(E != NULL); assert(E->A != NULL && E->B != NULL && E->p != NULL && E->h != NULL); assert(k != NULL); assert(!k->neg); assert(ctx != NULL); assert(mont != NULL); assert(mont->p != NULL); if (!E->is_in_mont) if (!EC_to_montgomery(E, mont, ctx)) return 0; if (!P->is_in_mont) if (!ECP_to_montgomery(P, mont, ctx)) return 0; if (BN_is_zero(k)) { if (!BN_zero(R->Z)) return 0; R->is_in_mont = 1; return 1; } if ((h = BN_dup(k)) == NULL) return 0; if (!BN_lshift1(h, h)) goto err; if (!BN_add(h, h, k)) goto err; if (!ECP_copy(R, P)) goto err; if ((mP = ECP_mont_minus(P, mont)) == NULL) goto err; for(j = BN_num_bits(h) - 2; j > 0; j--) { if (!ECP_mont_double(R, R, E, mont, ctx)) goto err; kj = BN_is_bit_set(k, j); hj = BN_is_bit_set(h, j); if (hj == 1 && kj == 0) if (!ECP_mont_add(R, R, P, E, mont, ctx)) goto err; if (hj == 0 && kj == 1) if (!ECP_mont_add(R, R, mP, E, mont, ctx)) goto err; } if (h != NULL) BN_free(h); if (mP != NULL) ECP_clear_free(mP); return 1; err: if (h != NULL) BN_free(h); if (mP != NULL) ECP_clear_free(mP); return 0; } #endif /* MONTGOMERY */