/* * Copyright 2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "internal/modes_int.h" #include "modes_lcl.h" #ifndef OPENSSL_NO_SIV __owur static ossl_inline uint32_t rotl8(uint32_t x) { return (x << 8) | (x >> 24); } __owur static ossl_inline uint32_t rotr8(uint32_t x) { return (x >> 8) | (x << 24); } __owur static ossl_inline uint64_t byteswap8(uint64_t x) { uint32_t high = (uint32_t)(x >> 32); uint32_t low = (uint32_t)x; high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00); low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00); return ((uint64_t)low) << 32 | (uint64_t)high; } __owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) return byteswap8(b->word[i]); return b->word[i]; } static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x) { const union { long one; char little; } is_endian = { 1 }; if (is_endian.little) b->word[i] = byteswap8(x); else b->word[i] = x; } static ossl_inline void siv128_xorblock(SIV_BLOCK *x, SIV_BLOCK const *y) { x->word[0] ^= y->word[0]; x->word[1] ^= y->word[1]; } /* * Doubles |b|, which is 16 bytes representing an element * of GF(2**128) modulo the irreducible polynomial * x**128 + x**7 + x**2 + x + 1. * Assumes two's-complement arithmetic */ static ossl_inline void siv128_dbl(SIV_BLOCK *b) { uint64_t high = siv128_getword(b, 0); uint64_t low = siv128_getword(b, 1); uint64_t high_carry = high & (((uint64_t)1) << 63); uint64_t low_carry = low & (((uint64_t)1) << 63); int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87; uint64_t high_mask = low_carry >> 63; high = (high << 1) | high_mask; low = (low << 1) ^ (uint64_t)low_mask; siv128_putword(b, 0, high); siv128_putword(b, 1, low); } __owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out, unsigned char const* in, size_t len) { SIV_BLOCK t; size_t out_len = sizeof(out->byte); EVP_MAC_CTX *mac_ctx; int ret = 0; mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init); if (mac_ctx == NULL) return 0; if (len >= SIV_LEN) { if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN)) goto err; memcpy(&t, in + (len-SIV_LEN), SIV_LEN); siv128_xorblock(&t, &ctx->d); if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) goto err; } else { memset(&t, 0, sizeof(t)); memcpy(&t, in, len); t.byte[len] = 0x80; siv128_dbl(&ctx->d); siv128_xorblock(&t, &ctx->d); if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) goto err; } if (!EVP_MAC_final(mac_ctx, out->byte, &out_len) || out_len != SIV_LEN) goto err; ret = 1; err: EVP_MAC_CTX_free(mac_ctx); return ret; } __owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out, unsigned char const *in, size_t len, SIV_BLOCK *icv) { int out_len = (int)len; if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1)) return 0; return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len); } /* * Create a new SIV128_CONTEXT */ SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr) { SIV128_CONTEXT *ctx; int ret; if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) { ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr); if (ret) return ctx; OPENSSL_free(ctx); } return NULL; } /* * Initialise an existing SIV128_CONTEXT */ int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen, const EVP_CIPHER* cbc, const EVP_CIPHER* ctr) { static const unsigned char zero[SIV_LEN] = { 0 }; size_t out_len = SIV_LEN; EVP_MAC_CTX *mac_ctx = NULL; memset(&ctx->d, 0, sizeof(ctx->d)); ctx->cipher_ctx = NULL; ctx->mac_ctx_init = NULL; if (key == NULL || cbc == NULL || ctr == NULL || (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL || (ctx->mac_ctx_init = EVP_MAC_CTX_new_id(EVP_MAC_CMAC)) == NULL || EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_CIPHER, cbc) <= 0 || EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_KEY, key, klen) <= 0 || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL) || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL || !EVP_MAC_update(mac_ctx, zero, sizeof(zero)) || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len)) { EVP_CIPHER_CTX_free(ctx->cipher_ctx); EVP_MAC_CTX_free(ctx->mac_ctx_init); EVP_MAC_CTX_free(mac_ctx); return 0; } EVP_MAC_CTX_free(mac_ctx); ctx->final_ret = -1; ctx->crypto_ok = 1; return 1; } /* * Copy an SIV128_CONTEXT object */ int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src) { memcpy(&dest->d, &src->d, sizeof(src->d)); if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx)) return 0; EVP_MAC_CTX_free(dest->mac_ctx_init); dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init); if (dest->mac_ctx_init == NULL) return 0; return 1; } /* * Provide any AAD. This can be called multiple times. * Per RFC5297, the last piece of associated data * is the nonce, but it's not treated special */ int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad, size_t len) { SIV_BLOCK mac_out; size_t out_len = SIV_LEN; EVP_MAC_CTX *mac_ctx; siv128_dbl(&ctx->d); mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init); if (mac_ctx == NULL || !EVP_MAC_update(mac_ctx, aad, len) || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len) || out_len != SIV_LEN) { EVP_MAC_CTX_free(mac_ctx); return 0; } EVP_MAC_CTX_free(mac_ctx); siv128_xorblock(&ctx->d, &mac_out); return 1; } /* * Provide any data to be encrypted. This can be called once. */ int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { SIV_BLOCK q; /* can only do one crypto operation */ if (ctx->crypto_ok == 0) return 0; ctx->crypto_ok--; if (!siv128_do_s2v_p(ctx, &q, in, len)) return 0; memcpy(ctx->tag.byte, &q, SIV_LEN); q.byte[8] &= 0x7f; q.byte[12] &= 0x7f; if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)) return 0; ctx->final_ret = 0; return len; } /* * Provide any data to be decrypted. This can be called once. */ int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { unsigned char* p; SIV_BLOCK t, q; int i; /* can only do one crypto operation */ if (ctx->crypto_ok == 0) return 0; ctx->crypto_ok--; memcpy(&q, ctx->tag.byte, SIV_LEN); q.byte[8] &= 0x7f; q.byte[12] &= 0x7f; if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q) || !siv128_do_s2v_p(ctx, &t, out, len)) return 0; p = ctx->tag.byte; for (i = 0; i < SIV_LEN; i++) t.byte[i] ^= p[i]; if ((t.word[0] | t.word[1]) != 0) { OPENSSL_cleanse(out, len); return 0; } ctx->final_ret = 0; return len; } /* * Return the already calculated final result. */ int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx) { return ctx->final_ret; } /* * Set the tag */ int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len) { if (len != SIV_LEN) return 0; /* Copy the tag from the supplied buffer */ memcpy(ctx->tag.byte, tag, len); return 1; } /* * Retrieve the calculated tag */ int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len) { if (len != SIV_LEN) return 0; /* Copy the tag into the supplied buffer */ memcpy(tag, ctx->tag.byte, len); return 1; } /* * Release all resources */ int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx) { if (ctx != NULL) { EVP_CIPHER_CTX_free(ctx->cipher_ctx); ctx->cipher_ctx = NULL; EVP_MAC_CTX_free(ctx->mac_ctx_init); ctx->mac_ctx_init = NULL; OPENSSL_cleanse(&ctx->d, sizeof(ctx->d)); OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag)); ctx->final_ret = -1; ctx->crypto_ok = 1; } return 1; } int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg) { ctx->crypto_ok = (arg == 1) ? -1 : 1; return 1; } #endif /* OPENSSL_NO_SIV */