/* crypto/evp/e_des.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "internal/cryptlib.h" #ifndef OPENSSL_NO_DES # include # include # include "evp_locl.h" # include # include typedef struct { union { double align; DES_key_schedule ks; } ks; union { void (*cbc) (const void *, void *, size_t, const void *, void *); } stream; } EVP_DES_KEY; # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) /* ---------^^^ this is not a typo, just a way to detect that * assembler support was in general requested... */ # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES) void des_t4_key_expand(const void *key, DES_key_schedule *ks); void des_t4_cbc_encrypt(const void *inp, void *out, size_t len, DES_key_schedule *ks, unsigned char iv[8]); void des_t4_cbc_decrypt(const void *inp, void *out, size_t len, DES_key_schedule *ks, unsigned char iv[8]); # endif static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); /* * Because of various casts and different names can't use * IMPLEMENT_BLOCK_CIPHER */ static int des_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { BLOCK_CIPHER_ecb_loop() DES_ecb_encrypt((DES_cblock *)(in + i), (DES_cblock *)(out + i), ctx->cipher_data, ctx->encrypt); return 1; } static int des_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, ctx->cipher_data, (DES_cblock *)ctx->iv, &ctx->num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ofb64_encrypt(in, out, (long)inl, ctx->cipher_data, (DES_cblock *)ctx->iv, &ctx->num); return 1; } static int des_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { EVP_DES_KEY *dat = (EVP_DES_KEY *) ctx->cipher_data; if (dat->stream.cbc) { (*dat->stream.cbc) (in, out, inl, &dat->ks.ks, ctx->iv); return 1; } while (inl >= EVP_MAXCHUNK) { DES_ncbc_encrypt(in, out, (long)EVP_MAXCHUNK, ctx->cipher_data, (DES_cblock *)ctx->iv, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ncbc_encrypt(in, out, (long)inl, ctx->cipher_data, (DES_cblock *)ctx->iv, ctx->encrypt); return 1; } static int des_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK, ctx->cipher_data, (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_cfb64_encrypt(in, out, (long)inl, ctx->cipher_data, (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt); return 1; } /* * Although we have a CFB-r implementation for DES, it doesn't pack the right * way, so wrap it here */ static int des_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { size_t n, chunk = EVP_MAXCHUNK / 8; unsigned char c[1], d[1]; if (inl < chunk) chunk = inl; while (inl && inl >= chunk) { for (n = 0; n < chunk * 8; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; DES_cfb_encrypt(c, d, 1, 1, ctx->cipher_data, (DES_cblock *)ctx->iv, ctx->encrypt); out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } inl -= chunk; in += chunk; out += chunk; if (inl < chunk) chunk = inl; } return 1; } static int des_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK, ctx->cipher_data, (DES_cblock *)ctx->iv, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_cfb_encrypt(in, out, 8, (long)inl, ctx->cipher_data, (DES_cblock *)ctx->iv, ctx->encrypt); return 1; } BLOCK_CIPHER_defs(des, EVP_DES_KEY, NID_des, 8, 8, 8, 64, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) BLOCK_CIPHER_def_cfb(des, EVP_DES_KEY, NID_des, 8, 8, 1, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) BLOCK_CIPHER_def_cfb(des, EVP_DES_KEY, NID_des, 8, 8, 8, EVP_CIPH_RAND_KEY, des_init_key, NULL, EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, des_ctrl) static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; EVP_DES_KEY *dat = (EVP_DES_KEY *) ctx->cipher_data; dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = ctx->cipher->flags & EVP_CIPH_MODE; if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(key, &dat->ks.ks); dat->stream.cbc = enc ? des_t4_cbc_encrypt : des_t4_cbc_decrypt; return 1; } } # endif # ifdef EVP_CHECK_DES_KEY if (DES_set_key_checked(deskey, dat->ks.ks) != 0) return 0; # else DES_set_key_unchecked(deskey, ctx->cipher_data); # endif return 1; } static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { switch (type) { case EVP_CTRL_RAND_KEY: if (RAND_bytes(ptr, 8) <= 0) return 0; DES_set_odd_parity((DES_cblock *)ptr); return 1; default: return -1; } } #endif