/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Details about Montgomery multiplication algorithms can be found at * http://security.ece.orst.edu/publications.html, e.g. * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf */ #include "internal/cryptlib.h" #include "bn_lcl.h" #define MONT_WORD /* use the faster word-based algorithm */ #ifdef MONT_WORD static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont); #endif int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx) { BIGNUM *tmp; int ret = 0; #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD) int num = mont->N.top; if (num > 1 && a->top == num && b->top == num) { if (bn_wexpand(r, num) == NULL) return 0; if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { r->neg = a->neg ^ b->neg; r->top = num; bn_correct_top(r); return 1; } } #endif BN_CTX_start(ctx); tmp = BN_CTX_get(ctx); if (tmp == NULL) goto err; bn_check_top(tmp); if (a == b) { if (!BN_sqr(tmp, a, ctx)) goto err; } else { if (!BN_mul(tmp, a, b, ctx)) goto err; } /* reduce from aRR to aR */ #ifdef MONT_WORD if (!BN_from_montgomery_word(r, tmp, mont)) goto err; #else if (!BN_from_montgomery(r, tmp, mont, ctx)) goto err; #endif bn_check_top(r); ret = 1; err: BN_CTX_end(ctx); return ret; } #ifdef MONT_WORD static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont) { BIGNUM *n; BN_ULONG *ap, *np, *rp, n0, v, carry; int nl, max, i; n = &(mont->N); nl = n->top; if (nl == 0) { ret->top = 0; return 1; } max = (2 * nl); /* carry is stored separately */ if (bn_wexpand(r, max) == NULL) return 0; r->neg ^= n->neg; np = n->d; rp = r->d; /* clear the top words of T */ i = max - r->top; if (i) memset(&rp[r->top], 0, sizeof(*rp) * i); r->top = max; n0 = mont->n0[0]; for (carry = 0, i = 0; i < nl; i++, rp++) { v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2); v = (v + carry + rp[nl]) & BN_MASK2; carry |= (v != rp[nl]); carry &= (v <= rp[nl]); rp[nl] = v; } if (bn_wexpand(ret, nl) == NULL) return 0; ret->top = nl; ret->neg = r->neg; rp = ret->d; ap = &(r->d[nl]); # define BRANCH_FREE 1 # if BRANCH_FREE { BN_ULONG *nrp; size_t m; v = bn_sub_words(rp, ap, np, nl) - carry; /* * if subtraction result is real, then trick unconditional memcpy * below to perform in-place "refresh" instead of actual copy. */ m = (0 - (size_t)v); nrp = (BN_ULONG *)(((PTR_SIZE_INT) rp & ~m) | ((PTR_SIZE_INT) ap & m)); for (i = 0, nl -= 4; i < nl; i += 4) { BN_ULONG t1, t2, t3, t4; t1 = nrp[i + 0]; t2 = nrp[i + 1]; t3 = nrp[i + 2]; ap[i + 0] = 0; t4 = nrp[i + 3]; ap[i + 1] = 0; rp[i + 0] = t1; ap[i + 2] = 0; rp[i + 1] = t2; ap[i + 3] = 0; rp[i + 2] = t3; rp[i + 3] = t4; } for (nl += 4; i < nl; i++) rp[i] = nrp[i], ap[i] = 0; } # else if (bn_sub_words(rp, ap, np, nl) - carry) memcpy(rp, ap, nl * sizeof(BN_ULONG)); # endif bn_correct_top(r); bn_correct_top(ret); bn_check_top(ret); return 1; } #endif /* MONT_WORD */ int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) { int retn = 0; #ifdef MONT_WORD BIGNUM *t; BN_CTX_start(ctx); if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) retn = BN_from_montgomery_word(ret, t, mont); BN_CTX_end(ctx); #else /* !MONT_WORD */ BIGNUM *t1, *t2; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); t2 = BN_CTX_get(ctx); if (t2 == NULL) goto err; if (!BN_copy(t1, a)) goto err; BN_mask_bits(t1, mont->ri); if (!BN_mul(t2, t1, &mont->Ni, ctx)) goto err; BN_mask_bits(t2, mont->ri); if (!BN_mul(t1, t2, &mont->N, ctx)) goto err; if (!BN_add(t2, a, t1)) goto err; if (!BN_rshift(ret, t2, mont->ri)) goto err; if (BN_ucmp(ret, &(mont->N)) >= 0) { if (!BN_usub(ret, ret, &(mont->N))) goto err; } retn = 1; bn_check_top(ret); err: BN_CTX_end(ctx); #endif /* MONT_WORD */ return retn; } BN_MONT_CTX *BN_MONT_CTX_new(void) { BN_MONT_CTX *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) return NULL; BN_MONT_CTX_init(ret); ret->flags = BN_FLG_MALLOCED; return ret; } void BN_MONT_CTX_init(BN_MONT_CTX *ctx) { ctx->ri = 0; bn_init(&(ctx->RR)); bn_init(&(ctx->N)); bn_init(&(ctx->Ni)); ctx->n0[0] = ctx->n0[1] = 0; ctx->flags = 0; } void BN_MONT_CTX_free(BN_MONT_CTX *mont) { if (mont == NULL) return; BN_clear_free(&(mont->RR)); BN_clear_free(&(mont->N)); BN_clear_free(&(mont->Ni)); if (mont->flags & BN_FLG_MALLOCED) OPENSSL_free(mont); } int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri, *R; if (BN_is_zero(mod)) return 0; BN_CTX_start(ctx); if ((Ri = BN_CTX_get(ctx)) == NULL) goto err; R = &(mont->RR); /* grab RR as a temp */ if (!BN_copy(&(mont->N), mod)) goto err; /* Set N */ if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) BN_set_flags(&(mont->N), BN_FLG_CONSTTIME); mont->N.neg = 0; #ifdef MONT_WORD { BIGNUM tmod; BN_ULONG buf[2]; bn_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) BN_set_flags(&tmod, BN_FLG_CONSTTIME); mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; # if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) /* * Only certain BN_BITS2<=32 platforms actually make use of n0[1], * and we could use the #else case (with a shorter R value) for the * others. However, currently only the assembler files do know which * is which. */ BN_zero(R); if (!(BN_set_bit(R, 2 * BN_BITS2))) goto err; tmod.top = 0; if ((buf[0] = mod->d[0])) tmod.top = 1; if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) tmod.top = 2; if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else { /* if N mod word size == 1 */ if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) goto err; /* Ri-- (mod double word size) */ Ri->neg = 0; Ri->d[0] = BN_MASK2; Ri->d[1] = BN_MASK2; Ri->top = 2; } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* * Ni = (R*Ri-1)/N, keep only couple of least significant words: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; # else BN_zero(R); if (!(BN_set_bit(R, BN_BITS2))) goto err; /* R */ buf[0] = mod->d[0]; /* tmod = N mod word size */ buf[1] = 0; tmod.top = buf[0] != 0 ? 1 : 0; /* Ri = R^-1 mod N */ if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else { /* if N mod word size == 1 */ if (!BN_set_word(Ri, BN_MASK2)) goto err; /* Ri-- (mod word size) */ } if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) goto err; /* * Ni = (R*Ri-1)/N, keep only least significant word: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = 0; # endif } #else /* !MONT_WORD */ { /* bignum version */ mont->ri = BN_num_bits(&mont->N); BN_zero(R); if (!BN_set_bit(R, mont->ri)) goto err; /* R = 2^ri */ /* Ri = R^-1 mod N */ if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, mont->ri)) goto err; /* R*Ri */ if (!BN_sub_word(Ri, 1)) goto err; /* * Ni = (R*Ri-1) / N */ if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx)) goto err; } #endif /* setup RR for conversions */ BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), mont->ri * 2)) goto err; if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; } BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from) { if (to == from) return to; if (!BN_copy(&(to->RR), &(from->RR))) return NULL; if (!BN_copy(&(to->N), &(from->N))) return NULL; if (!BN_copy(&(to->Ni), &(from->Ni))) return NULL; to->ri = from->ri; to->n0[0] = from->n0[0]; to->n0[1] = from->n0[1]; return to; } BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, const BIGNUM *mod, BN_CTX *ctx) { BN_MONT_CTX *ret; CRYPTO_THREAD_read_lock(lock); ret = *pmont; CRYPTO_THREAD_unlock(lock); if (ret) return ret; /* * We don't want to serialise globally while doing our lazy-init math in * BN_MONT_CTX_set. That punishes threads that are doing independent * things. Instead, punish the case where more than one thread tries to * lazy-init the same 'pmont', by having each do the lazy-init math work * independently and only use the one from the thread that wins the race * (the losers throw away the work they've done). */ ret = BN_MONT_CTX_new(); if (ret == NULL) return NULL; if (!BN_MONT_CTX_set(ret, mod, ctx)) { BN_MONT_CTX_free(ret); return NULL; } /* The locked compare-and-set, after the local work is done. */ CRYPTO_THREAD_write_lock(lock); if (*pmont) { BN_MONT_CTX_free(ret); ret = *pmont; } else *pmont = ret; CRYPTO_THREAD_unlock(lock); return ret; }