/* ssl/d1_both.c */ /* * DTLS implementation written by Nagendra Modadugu * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ /* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "ssl_locl.h" #include #include #include #include #include /* XDTLS: figure out the right values */ static unsigned int g_probable_mtu[] = {1500 - 28, 512 - 28, 256 - 28}; static unsigned int dtls1_min_mtu(void); static unsigned int dtls1_guess_mtu(unsigned int curr_mtu); static void dtls1_fix_message_header(SSL *s, unsigned long frag_off, unsigned long frag_len); static unsigned char *dtls1_write_message_header(SSL *s, unsigned char *p); static void dtls1_set_message_header_int(SSL *s, unsigned char mt, unsigned long len, unsigned short seq_num, unsigned long frag_off, unsigned long frag_len); static long dtls1_get_message_fragment(SSL *s, int st1, int stn, long max, int *ok); static hm_fragment * dtls1_hm_fragment_new(unsigned long frag_len) { hm_fragment *frag = NULL; unsigned char *buf = NULL; frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment)); if ( frag == NULL) return NULL; if (frag_len) { buf = (unsigned char *)OPENSSL_malloc(frag_len); if ( buf == NULL) { OPENSSL_free(frag); return NULL; } } /* zero length fragment gets zero frag->fragment */ frag->fragment = buf; return frag; } static void dtls1_hm_fragment_free(hm_fragment *frag) { if (frag->fragment) OPENSSL_free(frag->fragment); OPENSSL_free(frag); } /* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or SSL3_RT_CHANGE_CIPHER_SPEC) */ int dtls1_do_write(SSL *s, int type) { int ret; int curr_mtu; unsigned int len, frag_off; /* AHA! Figure out the MTU, and stick to the right size */ if ( ! (SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) { s->d1->mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); /* I've seen the kernel return bogus numbers when it doesn't know * (initial write), so just make sure we have a reasonable number */ if ( s->d1->mtu < dtls1_min_mtu()) { s->d1->mtu = 0; s->d1->mtu = dtls1_guess_mtu(s->d1->mtu); BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU, s->d1->mtu, NULL); } } #if 0 mtu = s->d1->mtu; fprintf(stderr, "using MTU = %d\n", mtu); mtu -= (DTLS1_HM_HEADER_LENGTH + DTLS1_RT_HEADER_LENGTH); curr_mtu = mtu - BIO_wpending(SSL_get_wbio(s)); if ( curr_mtu > 0) mtu = curr_mtu; else if ( ( ret = BIO_flush(SSL_get_wbio(s))) <= 0) return ret; if ( BIO_wpending(SSL_get_wbio(s)) + s->init_num >= mtu) { ret = BIO_flush(SSL_get_wbio(s)); if ( ret <= 0) return ret; mtu = s->d1->mtu - (DTLS1_HM_HEADER_LENGTH + DTLS1_RT_HEADER_LENGTH); } OPENSSL_assert(mtu > 0); /* should have something reasonable now */ #endif if ( s->init_off == 0 && type == SSL3_RT_HANDSHAKE) OPENSSL_assert(s->init_num == (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH); frag_off = 0; while( s->init_num) { curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) - DTLS1_RT_HEADER_LENGTH; if ( curr_mtu <= DTLS1_HM_HEADER_LENGTH) { /* grr.. we could get an error if MTU picked was wrong */ ret = BIO_flush(SSL_get_wbio(s)); if ( ret <= 0) return ret; curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH; } if ( s->init_num > curr_mtu) len = curr_mtu; else len = s->init_num; /* XDTLS: this function is too long. split out the CCS part */ if ( type == SSL3_RT_HANDSHAKE) { if ( s->init_off != 0) { OPENSSL_assert(s->init_off > DTLS1_HM_HEADER_LENGTH); s->init_off -= DTLS1_HM_HEADER_LENGTH; s->init_num += DTLS1_HM_HEADER_LENGTH; /* write atleast DTLS1_HM_HEADER_LENGTH bytes */ if ( len <= DTLS1_HM_HEADER_LENGTH) len += DTLS1_HM_HEADER_LENGTH; } dtls1_fix_message_header(s, frag_off, len - DTLS1_HM_HEADER_LENGTH); dtls1_write_message_header(s, (unsigned char *)&s->init_buf->data[s->init_off]); OPENSSL_assert(len >= DTLS1_HM_HEADER_LENGTH); } ret=dtls1_write_bytes(s,type,&s->init_buf->data[s->init_off], len); if (ret < 0) { /* might need to update MTU here, but we don't know * which previous packet caused the failure -- so can't * really retransmit anything. continue as if everything * is fine and wait for an alert to handle the * retransmit */ if ( BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_MTU_EXCEEDED, 0, NULL)) s->d1->mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); else return(-1); } else { /* bad if this assert fails, only part of the handshake * message got sent. but why would this happen? */ OPENSSL_assert(len == (unsigned int)ret); if (type == SSL3_RT_HANDSHAKE && ! s->d1->retransmitting) { /* should not be done for 'Hello Request's, but in that case * we'll ignore the result anyway */ unsigned char *p = (unsigned char *)&s->init_buf->data[s->init_off]; const struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; int xlen; if (frag_off == 0 && s->client_version != DTLS1_BAD_VER) { /* reconstruct message header is if it * is being sent in single fragment */ *p++ = msg_hdr->type; l2n3(msg_hdr->msg_len,p); s2n (msg_hdr->seq,p); l2n3(0,p); l2n3(msg_hdr->msg_len,p); p -= DTLS1_HM_HEADER_LENGTH; xlen = ret; } else { p += DTLS1_HM_HEADER_LENGTH; xlen = ret - DTLS1_HM_HEADER_LENGTH; } ssl3_finish_mac(s, p, xlen); } if (ret == s->init_num) { if (s->msg_callback) s->msg_callback(1, s->version, type, s->init_buf->data, (size_t)(s->init_off + s->init_num), s, s->msg_callback_arg); s->init_off = 0; /* done writing this message */ s->init_num = 0; return(1); } s->init_off+=ret; s->init_num-=ret; frag_off += (ret -= DTLS1_HM_HEADER_LENGTH); } } return(0); } /* Obtain handshake message of message type 'mt' (any if mt == -1), * maximum acceptable body length 'max'. * Read an entire handshake message. Handshake messages arrive in * fragments. */ long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok) { int i, al; struct hm_header_st *msg_hdr; /* s3->tmp is used to store messages that are unexpected, caused * by the absence of an optional handshake message */ if (s->s3->tmp.reuse_message) { s->s3->tmp.reuse_message=0; if ((mt >= 0) && (s->s3->tmp.message_type != mt)) { al=SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_DTLS1_GET_MESSAGE,SSL_R_UNEXPECTED_MESSAGE); goto f_err; } *ok=1; s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH; s->init_num = (int)s->s3->tmp.message_size; return s->init_num; } msg_hdr = &s->d1->r_msg_hdr; do { if ( msg_hdr->frag_off == 0) { /* s->d1->r_message_header.msg_len = 0; */ memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); } i = dtls1_get_message_fragment(s, st1, stn, max, ok); if ( i == DTLS1_HM_BAD_FRAGMENT || i == DTLS1_HM_FRAGMENT_RETRY) /* bad fragment received */ continue; else if ( i <= 0 && !*ok) return i; /* Note that s->init_sum is used as a counter summing * up fragments' lengths: as soon as they sum up to * handshake packet length, we assume we have got all * the fragments. Overlapping fragments would cause * premature termination, so we don't expect overlaps. * Well, handling overlaps would require something more * drastic. Indeed, as it is now there is no way to * tell if out-of-order fragment from the middle was * the last. '>=' is the best/least we can do to control * the potential damage caused by malformed overlaps. */ if ((unsigned int)s->init_num >= msg_hdr->msg_len) { unsigned char *p = (unsigned char *)s->init_buf->data; unsigned long msg_len = msg_hdr->msg_len; /* reconstruct message header as if it was * sent in single fragment */ *(p++) = msg_hdr->type; l2n3(msg_len,p); s2n (msg_hdr->seq,p); l2n3(0,p); l2n3(msg_len,p); if (s->client_version != DTLS1_BAD_VER) p -= DTLS1_HM_HEADER_LENGTH, msg_len += DTLS1_HM_HEADER_LENGTH; ssl3_finish_mac(s, p, msg_len); if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, p, msg_len, s, s->msg_callback_arg); memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); s->d1->handshake_read_seq++; /* we just read a handshake message from the other side: * this means that we don't need to retransmit of the * buffered messages. * XDTLS: may be able clear out this * buffer a little sooner (i.e if an out-of-order * handshake message/record is received at the record * layer. * XDTLS: exception is that the server needs to * know that change cipher spec and finished messages * have been received by the client before clearing this * buffer. this can simply be done by waiting for the * first data segment, but is there a better way? */ dtls1_clear_record_buffer(s); s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH; return s->init_num; } else msg_hdr->frag_off = i; } while(1) ; f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); *ok = 0; return -1; } static int dtls1_preprocess_fragment(SSL *s,struct hm_header_st *msg_hdr,int max) { size_t frag_off,frag_len,msg_len; msg_len = msg_hdr->msg_len; frag_off = msg_hdr->frag_off; frag_len = msg_hdr->frag_len; /* sanity checking */ if ( (frag_off+frag_len) > msg_len) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } if ( (frag_off+frag_len) > (unsigned long)max) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } if ( s->d1->r_msg_hdr.frag_off == 0) /* first fragment */ { /* msg_len is limited to 2^24, but is effectively checked * against max above */ if (!BUF_MEM_grow_clean(s->init_buf,(int)msg_len+DTLS1_HM_HEADER_LENGTH)) { SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,ERR_R_BUF_LIB); return SSL_AD_INTERNAL_ERROR; } s->s3->tmp.message_size = msg_len; s->d1->r_msg_hdr.msg_len = msg_len; s->s3->tmp.message_type = msg_hdr->type; s->d1->r_msg_hdr.type = msg_hdr->type; s->d1->r_msg_hdr.seq = msg_hdr->seq; } else if (msg_len != s->d1->r_msg_hdr.msg_len) { /* They must be playing with us! BTW, failure to enforce * upper limit would open possibility for buffer overrun. */ SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_SIZE); return SSL_AD_ILLEGAL_PARAMETER; } return 0; /* no error */ } static int dtls1_retrieve_buffered_fragment(SSL *s, long max, int *ok) { /* (0) check whether the desired fragment is available * if so: * (1) copy over the fragment to s->init_buf->data[] * (2) update s->init_num */ pitem *item; hm_fragment *frag; int al; *ok = 0; item = pqueue_peek(s->d1->buffered_messages); if ( item == NULL) return 0; frag = (hm_fragment *)item->data; if ( s->d1->handshake_read_seq == frag->msg_header.seq) { pqueue_pop(s->d1->buffered_messages); al=dtls1_preprocess_fragment(s,&frag->msg_header,max); if (al==0) /* no alert */ { unsigned char *p = (unsigned char *)s->init_buf->data+DTLS1_HM_HEADER_LENGTH; memcpy(&p[frag->msg_header.frag_off], frag->fragment,frag->msg_header.frag_len); } dtls1_hm_fragment_free(frag); pitem_free(item); if (al==0) { *ok = 1; return frag->msg_header.frag_len; } ssl3_send_alert(s,SSL3_AL_FATAL,al); s->init_num = 0; *ok = 0; return -1; } else return 0; } static int dtls1_process_out_of_seq_message(SSL *s, struct hm_header_st* msg_hdr, int *ok) { int i=-1; hm_fragment *frag = NULL; pitem *item = NULL; PQ_64BIT seq64; unsigned long frag_len = msg_hdr->frag_len; if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len) goto err; if (msg_hdr->seq <= s->d1->handshake_read_seq) { unsigned char devnull [256]; while (frag_len) { i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE, devnull, frag_len>sizeof(devnull)?sizeof(devnull):frag_len,0); if (i<=0) goto err; frag_len -= i; } } if (frag_len) { frag = dtls1_hm_fragment_new(frag_len); if ( frag == NULL) goto err; memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr)); /* read the body of the fragment (header has already been read) */ i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE, frag->fragment,frag_len,0); if (i<=0 || (unsigned long)i!=frag_len) goto err; pq_64bit_init(&seq64); pq_64bit_assign_word(&seq64, msg_hdr->seq); item = pitem_new(seq64, frag); pq_64bit_free(&seq64); if ( item == NULL) goto err; pqueue_insert(s->d1->buffered_messages, item); } return DTLS1_HM_FRAGMENT_RETRY; err: if ( frag != NULL) dtls1_hm_fragment_free(frag); if ( item != NULL) OPENSSL_free(item); *ok = 0; return i; } static long dtls1_get_message_fragment(SSL *s, int st1, int stn, long max, int *ok) { unsigned char wire[DTLS1_HM_HEADER_LENGTH]; unsigned long l, frag_off, frag_len; int i,al; struct hm_header_st msg_hdr; /* see if we have the required fragment already */ if ((frag_len = dtls1_retrieve_buffered_fragment(s,max,ok)) || *ok) { if (*ok) s->init_num += frag_len; return frag_len; } /* read handshake message header */ i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,wire, DTLS1_HM_HEADER_LENGTH, 0); if (i <= 0) /* nbio, or an error */ { s->rwstate=SSL_READING; *ok = 0; return i; } OPENSSL_assert(i == DTLS1_HM_HEADER_LENGTH); /* parse the message fragment header */ dtls1_get_message_header(wire, &msg_hdr); /* * if this is a future (or stale) message it gets buffered * (or dropped)--no further processing at this time */ if ( msg_hdr.seq != s->d1->handshake_read_seq) return dtls1_process_out_of_seq_message(s, &msg_hdr, ok); l = msg_hdr.msg_len; frag_off = msg_hdr.frag_off; frag_len = msg_hdr.frag_len; if (!s->server && s->d1->r_msg_hdr.frag_off == 0 && wire[0] == SSL3_MT_HELLO_REQUEST) { /* The server may always send 'Hello Request' messages -- * we are doing a handshake anyway now, so ignore them * if their format is correct. Does not count for * 'Finished' MAC. */ if (wire[1] == 0 && wire[2] == 0 && wire[3] == 0) { if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, wire, DTLS1_HM_HEADER_LENGTH, s, s->msg_callback_arg); s->init_num = 0; return dtls1_get_message_fragment(s, st1, stn, max, ok); } else /* Incorrectly formated Hello request */ { al=SSL_AD_UNEXPECTED_MESSAGE; SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,SSL_R_UNEXPECTED_MESSAGE); goto f_err; } } if ((al=dtls1_preprocess_fragment(s,&msg_hdr,max))) goto f_err; /* XDTLS: ressurect this when restart is in place */ s->state=stn; if ( frag_len > 0) { unsigned char *p=(unsigned char *)s->init_buf->data+DTLS1_HM_HEADER_LENGTH; i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE, &p[frag_off],frag_len,0); /* XDTLS: fix this--message fragments cannot span multiple packets */ if (i <= 0) { s->rwstate=SSL_READING; *ok = 0; return i; } } else i = 0; /* XDTLS: an incorrectly formatted fragment should cause the * handshake to fail */ OPENSSL_assert(i == (int)frag_len); *ok = 1; /* Note that s->init_num is *not* used as current offset in * s->init_buf->data, but as a counter summing up fragments' * lengths: as soon as they sum up to handshake packet * length, we assume we have got all the fragments. */ s->init_num += frag_len; return frag_len; f_err: ssl3_send_alert(s,SSL3_AL_FATAL,al); s->init_num = 0; *ok=0; return(-1); } int dtls1_send_finished(SSL *s, int a, int b, const char *sender, int slen) { unsigned char *p,*d; int i; unsigned long l; if (s->state == a) { d=(unsigned char *)s->init_buf->data; p= &(d[DTLS1_HM_HEADER_LENGTH]); i=s->method->ssl3_enc->final_finish_mac(s, &(s->s3->finish_dgst1), &(s->s3->finish_dgst2), sender,slen,s->s3->tmp.finish_md); s->s3->tmp.finish_md_len = i; memcpy(p, s->s3->tmp.finish_md, i); p+=i; l=i; #ifdef OPENSSL_SYS_WIN16 /* MSVC 1.5 does not clear the top bytes of the word unless * I do this. */ l&=0xffff; #endif d = dtls1_set_message_header(s, d, SSL3_MT_FINISHED, l, 0, l); s->init_num=(int)l+DTLS1_HM_HEADER_LENGTH; s->init_off=0; /* buffer the message to handle re-xmits */ dtls1_buffer_message(s, 0); s->state=b; } /* SSL3_ST_SEND_xxxxxx_HELLO_B */ return(dtls1_do_write(s,SSL3_RT_HANDSHAKE)); } /* for these 2 messages, we need to * ssl->enc_read_ctx re-init * ssl->s3->read_sequence zero * ssl->s3->read_mac_secret re-init * ssl->session->read_sym_enc assign * ssl->session->read_compression assign * ssl->session->read_hash assign */ int dtls1_send_change_cipher_spec(SSL *s, int a, int b) { unsigned char *p; if (s->state == a) { p=(unsigned char *)s->init_buf->data; *p++=SSL3_MT_CCS; s->d1->handshake_write_seq = s->d1->next_handshake_write_seq; s->init_num=DTLS1_CCS_HEADER_LENGTH; if (s->client_version == DTLS1_BAD_VER) { s->d1->next_handshake_write_seq++; s2n(s->d1->handshake_write_seq,p); s->init_num+=2; } s->init_off=0; dtls1_set_message_header_int(s, SSL3_MT_CCS, 0, s->d1->handshake_write_seq, 0, 0); /* buffer the message to handle re-xmits */ dtls1_buffer_message(s, 1); s->state=b; } /* SSL3_ST_CW_CHANGE_B */ return(dtls1_do_write(s,SSL3_RT_CHANGE_CIPHER_SPEC)); } unsigned long dtls1_output_cert_chain(SSL *s, X509 *x) { unsigned char *p; int n,i; unsigned long l= 3 + DTLS1_HM_HEADER_LENGTH; BUF_MEM *buf; X509_STORE_CTX xs_ctx; X509_OBJECT obj; /* TLSv1 sends a chain with nothing in it, instead of an alert */ buf=s->init_buf; if (!BUF_MEM_grow_clean(buf,10)) { SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_BUF_LIB); return(0); } if (x != NULL) { if(!X509_STORE_CTX_init(&xs_ctx,s->ctx->cert_store,NULL,NULL)) { SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_X509_LIB); return(0); } for (;;) { n=i2d_X509(x,NULL); if (!BUF_MEM_grow_clean(buf,(int)(n+l+3))) { SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_BUF_LIB); return(0); } p=(unsigned char *)&(buf->data[l]); l2n3(n,p); i2d_X509(x,&p); l+=n+3; if (X509_NAME_cmp(X509_get_subject_name(x), X509_get_issuer_name(x)) == 0) break; i=X509_STORE_get_by_subject(&xs_ctx,X509_LU_X509, X509_get_issuer_name(x),&obj); if (i <= 0) break; x=obj.data.x509; /* Count is one too high since the X509_STORE_get uped the * ref count */ X509_free(x); } X509_STORE_CTX_cleanup(&xs_ctx); } /* Thawte special :-) */ if (s->ctx->extra_certs != NULL) for (i=0; ictx->extra_certs); i++) { x=sk_X509_value(s->ctx->extra_certs,i); n=i2d_X509(x,NULL); if (!BUF_MEM_grow_clean(buf,(int)(n+l+3))) { SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_BUF_LIB); return(0); } p=(unsigned char *)&(buf->data[l]); l2n3(n,p); i2d_X509(x,&p); l+=n+3; } l-= (3 + DTLS1_HM_HEADER_LENGTH); p=(unsigned char *)&(buf->data[DTLS1_HM_HEADER_LENGTH]); l2n3(l,p); l+=3; p=(unsigned char *)&(buf->data[0]); p = dtls1_set_message_header(s, p, SSL3_MT_CERTIFICATE, l, 0, l); l+=DTLS1_HM_HEADER_LENGTH; return(l); } int dtls1_read_failed(SSL *s, int code) { DTLS1_STATE *state; BIO *bio; int send_alert = 0; if ( code > 0) { fprintf( stderr, "invalid state reached %s:%d", __FILE__, __LINE__); return 1; } bio = SSL_get_rbio(s); if ( ! BIO_dgram_recv_timedout(bio)) { /* not a timeout, none of our business, let higher layers handle this. in fact it's probably an error */ return code; } if ( ! SSL_in_init(s)) /* done, no need to send a retransmit */ { BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ); return code; } state = s->d1; state->timeout.num_alerts++; if ( state->timeout.num_alerts > DTLS1_TMO_ALERT_COUNT) { /* fail the connection, enough alerts have been sent */ SSLerr(SSL_F_DTLS1_READ_FAILED,SSL_R_READ_TIMEOUT_EXPIRED); return 0; } state->timeout.read_timeouts++; if ( state->timeout.read_timeouts > DTLS1_TMO_READ_COUNT) { send_alert = 1; state->timeout.read_timeouts = 1; } #if 0 /* for now, each alert contains only one record number */ item = pqueue_peek(state->rcvd_records); if ( item ) { /* send an alert immediately for all the missing records */ } else #endif #if 0 /* no more alert sending, just retransmit the last set of messages */ if ( send_alert) ssl3_send_alert(s,SSL3_AL_WARNING, DTLS1_AD_MISSING_HANDSHAKE_MESSAGE); #endif return dtls1_retransmit_buffered_messages(s) ; } int dtls1_get_queue_priority(unsigned short seq, int is_ccs) { /* The index of the retransmission queue actually is the message sequence number, * since the queue only contains messages of a single handshake. However, the * ChangeCipherSpec has no message sequence number and so using only the sequence * will result in the CCS and Finished having the same index. To prevent this, * the sequence number is multiplied by 2. In case of a CCS 1 is subtracted. * This does not only differ CSS and Finished, it also maintains the order of the * index (important for priority queues) and fits in the unsigned short variable. */ return seq * 2 - is_ccs; } int dtls1_retransmit_buffered_messages(SSL *s) { pqueue sent = s->d1->sent_messages; piterator iter; pitem *item; hm_fragment *frag; int found = 0; iter = pqueue_iterator(sent); for ( item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) { frag = (hm_fragment *)item->data; if ( dtls1_retransmit_message(s, dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs), 0, &found) <= 0 && found) { fprintf(stderr, "dtls1_retransmit_message() failed\n"); return -1; } } return 1; } int dtls1_buffer_message(SSL *s, int is_ccs) { pitem *item; hm_fragment *frag; PQ_64BIT seq64; /* this function is called immediately after a message has * been serialized */ OPENSSL_assert(s->init_off == 0); frag = dtls1_hm_fragment_new(s->init_num); memcpy(frag->fragment, s->init_buf->data, s->init_num); if ( is_ccs) { OPENSSL_assert(s->d1->w_msg_hdr.msg_len + DTLS1_CCS_HEADER_LENGTH <= (unsigned int)s->init_num); } else { OPENSSL_assert(s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH == (unsigned int)s->init_num); } frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len; frag->msg_header.seq = s->d1->w_msg_hdr.seq; frag->msg_header.type = s->d1->w_msg_hdr.type; frag->msg_header.frag_off = 0; frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len; frag->msg_header.is_ccs = is_ccs; /* save current state*/ frag->msg_header.saved_retransmit_state.enc_write_ctx = s->enc_write_ctx; frag->msg_header.saved_retransmit_state.write_hash = s->write_hash; frag->msg_header.saved_retransmit_state.compress = s->compress; frag->msg_header.saved_retransmit_state.session = s->session; frag->msg_header.saved_retransmit_state.epoch = s->d1->w_epoch; pq_64bit_init(&seq64); pq_64bit_assign_word(&seq64, dtls1_get_queue_priority(frag->msg_header.seq, frag->msg_header.is_ccs)); item = pitem_new(seq64, frag); pq_64bit_free(&seq64); if ( item == NULL) { dtls1_hm_fragment_free(frag); return 0; } #if 0 fprintf( stderr, "buffered messge: \ttype = %xx\n", msg_buf->type); fprintf( stderr, "\t\t\t\t\tlen = %d\n", msg_buf->len); fprintf( stderr, "\t\t\t\t\tseq_num = %d\n", msg_buf->seq_num); #endif pqueue_insert(s->d1->sent_messages, item); return 1; } int dtls1_retransmit_message(SSL *s, unsigned short seq, unsigned long frag_off, int *found) { int ret; /* XDTLS: for now assuming that read/writes are blocking */ pitem *item; hm_fragment *frag ; unsigned long header_length; PQ_64BIT seq64; struct dtls1_retransmit_state saved_state; unsigned char save_write_sequence[8]; /* OPENSSL_assert(s->init_num == 0); OPENSSL_assert(s->init_off == 0); */ /* XDTLS: the requested message ought to be found, otherwise error */ pq_64bit_init(&seq64); pq_64bit_assign_word(&seq64, seq); item = pqueue_find(s->d1->sent_messages, seq64); pq_64bit_free(&seq64); if ( item == NULL) { fprintf(stderr, "retransmit: message %d non-existant\n", seq); *found = 0; return 0; } *found = 1; frag = (hm_fragment *)item->data; if ( frag->msg_header.is_ccs) header_length = DTLS1_CCS_HEADER_LENGTH; else header_length = DTLS1_HM_HEADER_LENGTH; memcpy(s->init_buf->data, frag->fragment, frag->msg_header.msg_len + header_length); s->init_num = frag->msg_header.msg_len + header_length; dtls1_set_message_header_int(s, frag->msg_header.type, frag->msg_header.msg_len, frag->msg_header.seq, 0, frag->msg_header.frag_len); /* save current state */ saved_state.enc_write_ctx = s->enc_write_ctx; saved_state.write_hash = s->write_hash; saved_state.compress = s->compress; saved_state.session = s->session; saved_state.epoch = s->d1->w_epoch; saved_state.epoch = s->d1->w_epoch; s->d1->retransmitting = 1; /* restore state in which the message was originally sent */ s->enc_write_ctx = frag->msg_header.saved_retransmit_state.enc_write_ctx; s->write_hash = frag->msg_header.saved_retransmit_state.write_hash; s->compress = frag->msg_header.saved_retransmit_state.compress; s->session = frag->msg_header.saved_retransmit_state.session; s->d1->w_epoch = frag->msg_header.saved_retransmit_state.epoch; if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch - 1) { memcpy(save_write_sequence, s->s3->write_sequence, sizeof(s->s3->write_sequence)); memcpy(s->s3->write_sequence, s->d1->last_write_sequence, sizeof(s->s3->write_sequence)); } ret = dtls1_do_write(s, frag->msg_header.is_ccs ? SSL3_RT_CHANGE_CIPHER_SPEC : SSL3_RT_HANDSHAKE); /* restore current state */ s->enc_write_ctx = saved_state.enc_write_ctx; s->write_hash = saved_state.write_hash; s->compress = saved_state.compress; s->session = saved_state.session; s->d1->w_epoch = saved_state.epoch; if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch - 1) { memcpy(s->d1->last_write_sequence, s->s3->write_sequence, sizeof(s->s3->write_sequence)); memcpy(s->s3->write_sequence, save_write_sequence, sizeof(s->s3->write_sequence)); } s->d1->retransmitting = 0; (void)BIO_flush(SSL_get_wbio(s)); return ret; } /* call this function when the buffered messages are no longer needed */ void dtls1_clear_record_buffer(SSL *s) { pitem *item; for(item = pqueue_pop(s->d1->sent_messages); item != NULL; item = pqueue_pop(s->d1->sent_messages)) { dtls1_hm_fragment_free((hm_fragment *)item->data); pitem_free(item); } } unsigned char * dtls1_set_message_header(SSL *s, unsigned char *p, unsigned char mt, unsigned long len, unsigned long frag_off, unsigned long frag_len) { if ( frag_off == 0) { s->d1->handshake_write_seq = s->d1->next_handshake_write_seq; s->d1->next_handshake_write_seq++; } dtls1_set_message_header_int(s, mt, len, s->d1->handshake_write_seq, frag_off, frag_len); return p += DTLS1_HM_HEADER_LENGTH; } /* don't actually do the writing, wait till the MTU has been retrieved */ static void dtls1_set_message_header_int(SSL *s, unsigned char mt, unsigned long len, unsigned short seq_num, unsigned long frag_off, unsigned long frag_len) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; msg_hdr->type = mt; msg_hdr->msg_len = len; msg_hdr->seq = seq_num; msg_hdr->frag_off = frag_off; msg_hdr->frag_len = frag_len; } static void dtls1_fix_message_header(SSL *s, unsigned long frag_off, unsigned long frag_len) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; msg_hdr->frag_off = frag_off; msg_hdr->frag_len = frag_len; } static unsigned char * dtls1_write_message_header(SSL *s, unsigned char *p) { struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr; *p++ = msg_hdr->type; l2n3(msg_hdr->msg_len, p); s2n(msg_hdr->seq, p); l2n3(msg_hdr->frag_off, p); l2n3(msg_hdr->frag_len, p); return p; } static unsigned int dtls1_min_mtu(void) { return (g_probable_mtu[(sizeof(g_probable_mtu) / sizeof(g_probable_mtu[0])) - 1]); } static unsigned int dtls1_guess_mtu(unsigned int curr_mtu) { size_t i; if ( curr_mtu == 0 ) return g_probable_mtu[0] ; for ( i = 0; i < sizeof(g_probable_mtu)/sizeof(g_probable_mtu[0]); i++) if ( curr_mtu > g_probable_mtu[i]) return g_probable_mtu[i]; return curr_mtu; } void dtls1_get_message_header(unsigned char *data, struct hm_header_st *msg_hdr) { memset(msg_hdr, 0x00, sizeof(struct hm_header_st)); msg_hdr->type = *(data++); n2l3(data, msg_hdr->msg_len); n2s(data, msg_hdr->seq); n2l3(data, msg_hdr->frag_off); n2l3(data, msg_hdr->frag_len); } void dtls1_get_ccs_header(unsigned char *data, struct ccs_header_st *ccs_hdr) { memset(ccs_hdr, 0x00, sizeof(struct ccs_header_st)); ccs_hdr->type = *(data++); }