/* ssl/t1_lib.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include #ifndef OPENSSL_NO_DH # include # include #endif #include "ssl_locl.h" const char tls1_version_str[] = "TLSv1" OPENSSL_VERSION_PTEXT; #ifndef OPENSSL_NO_TLSEXT static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess); static int ssl_check_clienthello_tlsext_early(SSL *s); int ssl_check_serverhello_tlsext(SSL *s); #endif SSL3_ENC_METHOD const TLSv1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, tls1_cert_verify_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; long tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return (0); s->method->ssl_clear(s); return (1); } void tls1_free(SSL *s) { #ifndef OPENSSL_NO_TLSEXT if (s->tlsext_session_ticket) { OPENSSL_free(s->tlsext_session_ticket); } #endif /* OPENSSL_NO_TLSEXT */ ssl3_free(s); } void tls1_clear(SSL *s) { ssl3_clear(s); s->version = s->method->version; } #ifndef OPENSSL_NO_EC typedef struct { int nid; /* Curve NID */ int secbits; /* Bits of security (from SP800-57) */ unsigned int flags; /* Flags: currently just field type */ } tls_curve_info; # define TLS_CURVE_CHAR2 0x1 # define TLS_CURVE_PRIME 0x0 static const tls_curve_info nid_list[] = { {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; static const unsigned char eccurves_default[] = { 0, 14, /* sect571r1 (14) */ 0, 13, /* sect571k1 (13) */ 0, 25, /* secp521r1 (25) */ 0, 28, /* brainpool512r1 (28) */ 0, 11, /* sect409k1 (11) */ 0, 12, /* sect409r1 (12) */ 0, 27, /* brainpoolP384r1 (27) */ 0, 24, /* secp384r1 (24) */ 0, 9, /* sect283k1 (9) */ 0, 10, /* sect283r1 (10) */ 0, 26, /* brainpoolP256r1 (26) */ 0, 22, /* secp256k1 (22) */ 0, 23, /* secp256r1 (23) */ 0, 8, /* sect239k1 (8) */ 0, 6, /* sect233k1 (6) */ 0, 7, /* sect233r1 (7) */ 0, 20, /* secp224k1 (20) */ 0, 21, /* secp224r1 (21) */ 0, 4, /* sect193r1 (4) */ 0, 5, /* sect193r2 (5) */ 0, 18, /* secp192k1 (18) */ 0, 19, /* secp192r1 (19) */ 0, 1, /* sect163k1 (1) */ 0, 2, /* sect163r1 (2) */ 0, 3, /* sect163r2 (3) */ 0, 15, /* secp160k1 (15) */ 0, 16, /* secp160r1 (16) */ 0, 17, /* secp160r2 (17) */ }; static const unsigned char suiteb_curves[] = { 0, TLSEXT_curve_P_256, 0, TLSEXT_curve_P_384 }; int tls1_ec_curve_id2nid(int curve_id) { /* ECC curves from RFC 4492 and RFC 7027 */ if ((curve_id < 1) || ((unsigned int)curve_id > sizeof(nid_list) / sizeof(nid_list[0]))) return 0; return nid_list[curve_id - 1].nid; } int tls1_ec_nid2curve_id(int nid) { /* ECC curves from RFC 4492 and RFC 7027 */ switch (nid) { case NID_sect163k1: /* sect163k1 (1) */ return 1; case NID_sect163r1: /* sect163r1 (2) */ return 2; case NID_sect163r2: /* sect163r2 (3) */ return 3; case NID_sect193r1: /* sect193r1 (4) */ return 4; case NID_sect193r2: /* sect193r2 (5) */ return 5; case NID_sect233k1: /* sect233k1 (6) */ return 6; case NID_sect233r1: /* sect233r1 (7) */ return 7; case NID_sect239k1: /* sect239k1 (8) */ return 8; case NID_sect283k1: /* sect283k1 (9) */ return 9; case NID_sect283r1: /* sect283r1 (10) */ return 10; case NID_sect409k1: /* sect409k1 (11) */ return 11; case NID_sect409r1: /* sect409r1 (12) */ return 12; case NID_sect571k1: /* sect571k1 (13) */ return 13; case NID_sect571r1: /* sect571r1 (14) */ return 14; case NID_secp160k1: /* secp160k1 (15) */ return 15; case NID_secp160r1: /* secp160r1 (16) */ return 16; case NID_secp160r2: /* secp160r2 (17) */ return 17; case NID_secp192k1: /* secp192k1 (18) */ return 18; case NID_X9_62_prime192v1: /* secp192r1 (19) */ return 19; case NID_secp224k1: /* secp224k1 (20) */ return 20; case NID_secp224r1: /* secp224r1 (21) */ return 21; case NID_secp256k1: /* secp256k1 (22) */ return 22; case NID_X9_62_prime256v1: /* secp256r1 (23) */ return 23; case NID_secp384r1: /* secp384r1 (24) */ return 24; case NID_secp521r1: /* secp521r1 (25) */ return 25; case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */ return 26; case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */ return 27; case NID_brainpoolP512r1: /* brainpool512r1 (28) */ return 28; default: return 0; } } /* * Get curves list, if "sess" is set return client curves otherwise * preferred list. * Sets |num_curves| to the number of curves in the list, i.e., * the length of |pcurves| is 2 * num_curves. * Returns 1 on success and 0 if the client curves list has invalid format. * The latter indicates an internal error: we should not be accepting such * lists in the first place. * TODO(emilia): we should really be storing the curves list in explicitly * parsed form instead. (However, this would affect binary compatibility * so cannot happen in the 1.0.x series.) */ static int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *num_curves) { size_t pcurveslen = 0; if (sess) { *pcurves = s->session->tlsext_ellipticcurvelist; pcurveslen = s->session->tlsext_ellipticcurvelist_length; } else { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pcurves = suiteb_curves; pcurveslen = sizeof(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pcurves = suiteb_curves; pcurveslen = 2; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pcurves = suiteb_curves + 2; pcurveslen = 2; break; default: *pcurves = s->tlsext_ellipticcurvelist; pcurveslen = s->tlsext_ellipticcurvelist_length; } if (!*pcurves) { *pcurves = eccurves_default; pcurveslen = sizeof(eccurves_default); } } /* We do not allow odd length arrays to enter the system. */ if (pcurveslen & 1) { SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR); *num_curves = 0; return 0; } else { *num_curves = pcurveslen / 2; return 1; } } /* See if curve is allowed by security callback */ static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op) { const tls_curve_info *cinfo; if (curve[0]) return 1; if ((curve[1] < 1) || ((size_t)curve[1] > sizeof(nid_list) / sizeof(nid_list[0]))) return 0; cinfo = &nid_list[curve[1] - 1]; # ifdef OPENSSL_NO_EC2M if (cinfo->flags & TLS_CURVE_CHAR2) return 0; # endif return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve); } /* Check a curve is one of our preferences */ int tls1_check_curve(SSL *s, const unsigned char *p, size_t len) { const unsigned char *curves; size_t num_curves, i; unsigned int suiteb_flags = tls1_suiteb(s); if (len != 3 || p[0] != NAMED_CURVE_TYPE) return 0; /* Check curve matches Suite B preferences */ if (suiteb_flags) { unsigned long cid = s->s3->tmp.new_cipher->id; if (p[1]) return 0; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (p[2] != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (p[2] != TLSEXT_curve_P_384) return 0; } else /* Should never happen */ return 0; } if (!tls1_get_curvelist(s, 0, &curves, &num_curves)) return 0; for (i = 0; i < num_curves; i++, curves += 2) { if (p[1] == curves[0] && p[2] == curves[1]) return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK); } return 0; } /*- * Return |nmatch|th shared curve or NID_undef if there is no match. * For nmatch == -1, return number of matches * For nmatch == -2, return the NID of the curve to use for * an EC tmp key, or NID_undef if there is no match. */ int tls1_shared_curve(SSL *s, int nmatch) { const unsigned char *pref, *supp; size_t num_pref, num_supp, i, j; int k; /* Can't do anything on client side */ if (s->server == 0) return -1; if (nmatch == -2) { if (tls1_suiteb(s)) { /* * For Suite B ciphersuite determines curve: we already know * these are acceptable due to previous checks. */ unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return NID_X9_62_prime256v1; /* P-256 */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return NID_secp384r1; /* P-384 */ /* Should never happen */ return NID_undef; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } /* * Avoid truncation. tls1_get_curvelist takes an int * but s->options is a long... */ if (!tls1_get_curvelist (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp, &num_supp)) /* In practice, NID_undef == 0 but let's be precise. */ return nmatch == -1 ? 0 : NID_undef; if (!tls1_get_curvelist (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, &num_pref)) return nmatch == -1 ? 0 : NID_undef; k = 0; for (i = 0; i < num_pref; i++, pref += 2) { const unsigned char *tsupp = supp; for (j = 0; j < num_supp; j++, tsupp += 2) { if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED)) continue; if (nmatch == k) { int id = (pref[0] << 8) | pref[1]; return tls1_ec_curve_id2nid(id); } k++; } } } if (nmatch == -1) return k; /* Out of range (nmatch > k). */ return NID_undef; } int tls1_set_curves(unsigned char **pext, size_t *pextlen, int *curves, size_t ncurves) { unsigned char *clist, *p; size_t i; /* * Bitmap of curves included to detect duplicates: only works while curve * ids < 32 */ unsigned long dup_list = 0; clist = OPENSSL_malloc(ncurves * 2); if (!clist) return 0; for (i = 0, p = clist; i < ncurves; i++) { unsigned long idmask; int id; id = tls1_ec_nid2curve_id(curves[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(clist); return 0; } dup_list |= idmask; s2n(id, p); } if (*pext) OPENSSL_free(*pext); *pext = clist; *pextlen = ncurves * 2; return 1; } # define MAX_CURVELIST 28 typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (elem == NULL) return 0; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set curves based on a colon separate list */ int tls1_set_curves_list(unsigned char **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; if (pext == NULL) return 1; return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } /* For an EC key set TLS id and required compression based on parameters */ static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, EC_KEY *ec) { int is_prime, id; const EC_GROUP *grp; const EC_METHOD *meth; if (!ec) return 0; /* Determine if it is a prime field */ grp = EC_KEY_get0_group(ec); if (!grp) return 0; meth = EC_GROUP_method_of(grp); if (!meth) return 0; if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field) is_prime = 1; else is_prime = 0; /* Determine curve ID */ id = EC_GROUP_get_curve_name(grp); id = tls1_ec_nid2curve_id(id); /* If we have an ID set it, otherwise set arbitrary explicit curve */ if (id) { curve_id[0] = 0; curve_id[1] = (unsigned char)id; } else { curve_id[0] = 0xff; if (is_prime) curve_id[1] = 0x01; else curve_id[1] = 0x02; } if (comp_id) { if (EC_KEY_get0_public_key(ec) == NULL) return 0; if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) { if (is_prime) *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } else *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } return 1; } /* Check an EC key is compatible with extensions */ static int tls1_check_ec_key(SSL *s, unsigned char *curve_id, unsigned char *comp_id) { const unsigned char *pformats, *pcurves; size_t num_formats, num_curves, i; int j; /* * If point formats extension present check it, otherwise everything is * supported (see RFC4492). */ if (comp_id && s->session->tlsext_ecpointformatlist) { pformats = s->session->tlsext_ecpointformatlist; num_formats = s->session->tlsext_ecpointformatlist_length; for (i = 0; i < num_formats; i++, pformats++) { if (*comp_id == *pformats) break; } if (i == num_formats) return 0; } if (!curve_id) return 1; /* Check curve is consistent with client and server preferences */ for (j = 0; j <= 1; j++) { if (!tls1_get_curvelist(s, j, &pcurves, &num_curves)) return 0; if (j == 1 && num_curves == 0) { /* * If we've not received any curves then skip this check. * RFC 4492 does not require the supported elliptic curves extension * so if it is not sent we can just choose any curve. * It is invalid to send an empty list in the elliptic curves * extension, so num_curves == 0 always means no extension. */ break; } for (i = 0; i < num_curves; i++, pcurves += 2) { if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1]) break; } if (i == num_curves) return 0; /* For clients can only check sent curve list */ if (!s->server) break; } return 1; } static void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats) { /* * If we have a custom point format list use it otherwise use default */ if (s->tlsext_ecpointformatlist) { *pformats = s->tlsext_ecpointformatlist; *num_formats = s->tlsext_ecpointformatlist_length; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *num_formats = sizeof(ecformats_default) - 1; else *num_formats = sizeof(ecformats_default); } } /* * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { unsigned char comp_id, curve_id[2]; EVP_PKEY *pkey; int rv; pkey = X509_get_pubkey(x); if (!pkey) return 0; /* If not EC nothing to do */ if (pkey->type != EVP_PKEY_EC) { EVP_PKEY_free(pkey); return 1; } rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec); EVP_PKEY_free(pkey); if (!rv) return 0; /* * Can't check curve_id for client certs as we don't have a supported * curves extension. */ rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id); if (!rv) return 0; /* * Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384, adjust digest if necessary. */ if (set_ee_md && tls1_suiteb(s)) { int check_md; size_t i; CERT *c = s->cert; if (curve_id[0]) return 0; /* Check to see we have necessary signing algorithm */ if (curve_id[1] == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (curve_id[1] == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < c->shared_sigalgslen; i++) if (check_md == c->shared_sigalgs[i].signandhash_nid) break; if (i == c->shared_sigalgslen) return 0; if (set_ee_md == 2) { if (check_md == NID_ecdsa_with_SHA256) c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256(); else c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384(); } } return rv; } # ifndef OPENSSL_NO_EC /* Check EC temporary key is compatible with client extensions */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { unsigned char curve_id[2]; EC_KEY *ec = s->cert->ecdh_tmp; # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL /* Allow any curve: not just those peer supports */ if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) return 1; # endif /* * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other * curves permitted. */ if (tls1_suiteb(s)) { /* Curve to check determined by ciphersuite */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) curve_id[1] = TLSEXT_curve_P_256; else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) curve_id[1] = TLSEXT_curve_P_384; else return 0; curve_id[0] = 0; /* Check this curve is acceptable */ if (!tls1_check_ec_key(s, curve_id, NULL)) return 0; /* If auto or setting curve from callback assume OK */ if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb) return 1; /* Otherwise check curve is acceptable */ else { unsigned char curve_tmp[2]; if (!ec) return 0; if (!tls1_set_ec_id(curve_tmp, NULL, ec)) return 0; if (!curve_tmp[0] || curve_tmp[1] == curve_id[1]) return 1; return 0; } } if (s->cert->ecdh_tmp_auto) { /* Need a shared curve */ if (tls1_shared_curve(s, 0)) return 1; else return 0; } if (!ec) { if (s->cert->ecdh_tmp_cb) return 1; else return 0; } if (!tls1_set_ec_id(curve_id, NULL, ec)) return 0; /* Set this to allow use of invalid curves for testing */ # if 0 return 1; # else return tls1_check_ec_key(s, curve_id, NULL); # endif } # endif /* OPENSSL_NO_EC */ #else static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { return 1; } #endif /* OPENSSL_NO_EC */ #ifndef OPENSSL_NO_TLSEXT /* * List of supported signature algorithms and hashes. Should make this * customisable at some point, for now include everything we support. */ # ifdef OPENSSL_NO_RSA # define tlsext_sigalg_rsa(md) /* */ # else # define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa, # endif # ifdef OPENSSL_NO_DSA # define tlsext_sigalg_dsa(md) /* */ # else # define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa, # endif # ifdef OPENSSL_NO_EC # define tlsext_sigalg_ecdsa(md) /* */ # else # define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa, # endif # define tlsext_sigalg(md) \ tlsext_sigalg_rsa(md) \ tlsext_sigalg_dsa(md) \ tlsext_sigalg_ecdsa(md) static const unsigned char tls12_sigalgs[] = { tlsext_sigalg(TLSEXT_hash_sha512) tlsext_sigalg(TLSEXT_hash_sha384) tlsext_sigalg(TLSEXT_hash_sha256) tlsext_sigalg(TLSEXT_hash_sha224) tlsext_sigalg(TLSEXT_hash_sha1) }; # ifndef OPENSSL_NO_EC static const unsigned char suiteb_sigalgs[] = { tlsext_sigalg_ecdsa(TLSEXT_hash_sha256) tlsext_sigalg_ecdsa(TLSEXT_hash_sha384) }; # endif size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ # ifndef OPENSSL_NO_EC switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return sizeof(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 2; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 2; return 2; } # endif /* If server use client authentication sigalgs if not NULL */ if (s->server && s->cert->client_sigalgs) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return sizeof(tls12_sigalgs); } } /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so return relevant digest. */ int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s, const unsigned char *sig, EVP_PKEY *pkey) { const unsigned char *sent_sigs; size_t sent_sigslen, i; int sigalg = tls12_get_sigid(pkey); /* Should never happen */ if (sigalg == -1) return -1; /* Check key type is consistent with signature */ if (sigalg != (int)sig[1]) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } # ifndef OPENSSL_NO_EC if (pkey->type == EVP_PKEY_EC) { unsigned char curve_id[2], comp_id; /* Check compression and curve matches extensions */ if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec)) return 0; if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */ if (tls1_suiteb(s)) { if (curve_id[0]) return 0; if (curve_id[1] == TLSEXT_curve_P_256) { if (sig[0] != TLSEXT_hash_sha256) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_SUITEB_DIGEST); return 0; } } else if (curve_id[1] == TLSEXT_curve_P_384) { if (sig[0] != TLSEXT_hash_sha384) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_SUITEB_DIGEST); return 0; } } else return 0; } } else if (tls1_suiteb(s)) return 0; # endif /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, &sent_sigs); for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) { if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1]) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (sig[0] != TLSEXT_hash_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } *pmd = tls12_get_hash(sig[0]); if (*pmd == NULL) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST); return 0; } /* Make sure security callback allows algorithm */ if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK, EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd), (void *)sig)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* * Store the digest used so applications can retrieve it if they wish. */ if (s->session && s->session->sess_cert) s->session->sess_cert->peer_key->digest = *pmd; return 1; } /* * Get a mask of disabled algorithms: an algorithm is disabled if it isn't * supported or doesn't appear in supported signature algorithms. Unlike * ssl_cipher_get_disabled this applies to a specific session and not global * settings. */ void ssl_set_client_disabled(SSL *s) { CERT *c = s->cert; c->mask_a = 0; c->mask_k = 0; /* Don't allow TLS 1.2 only ciphers if we don't suppport them */ if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) c->mask_ssl = SSL_TLSV1_2; else c->mask_ssl = 0; ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK); /* * Disable static DH if we don't include any appropriate signature * algorithms. */ if (c->mask_a & SSL_aRSA) c->mask_k |= SSL_kDHr | SSL_kECDHr; if (c->mask_a & SSL_aDSS) c->mask_k |= SSL_kDHd; if (c->mask_a & SSL_aECDSA) c->mask_k |= SSL_kECDHe; # ifndef OPENSSL_NO_KRB5 if (!kssl_tgt_is_available(s->kssl_ctx)) { c->mask_a |= SSL_aKRB5; c->mask_k |= SSL_kKRB5; } # endif # ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { c->mask_a |= SSL_aPSK; c->mask_k |= SSL_kPSK; } # endif /* OPENSSL_NO_PSK */ # ifndef OPENSSL_NO_SRP if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { c->mask_a |= SSL_aSRP; c->mask_k |= SSL_kSRP; } # endif c->valid = 1; } int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op) { CERT *ct = s->cert; if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k || c->algorithm_auth & ct->mask_a) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } static int tls_use_ticket(SSL *s) { if (s->options & SSL_OP_NO_TICKET) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al) { int extdatalen = 0; unsigned char *orig = buf; unsigned char *ret = buf; # ifndef OPENSSL_NO_EC /* See if we support any ECC ciphersuites */ int using_ecc = 0; if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) { int i; unsigned long alg_k, alg_a; STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s); for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) { SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe) || (alg_a & SSL_aECDSA))) { using_ecc = 1; break; } } } # endif ret += 2; if (ret >= limit) return NULL; /* this really never occurs, but ... */ /* Add RI if renegotiating */ if (s->renegotiate) { int el; if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate, ret); s2n(el, ret); if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } /* Only add RI for SSLv3 */ if (s->client_version == SSL3_VERSION) goto done; if (s->tlsext_hostname != NULL) { /* Add TLS extension servername to the Client Hello message */ unsigned long size_str; long lenmax; /*- * check for enough space. * 4 for the servername type and entension length * 2 for servernamelist length * 1 for the hostname type * 2 for hostname length * + hostname length */ if ((lenmax = limit - ret - 9) < 0 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax) return NULL; /* extension type and length */ s2n(TLSEXT_TYPE_server_name, ret); s2n(size_str + 5, ret); /* length of servername list */ s2n(size_str + 3, ret); /* hostname type, length and hostname */ *(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name; s2n(size_str, ret); memcpy(ret, s->tlsext_hostname, size_str); ret += size_str; } # ifndef OPENSSL_NO_SRP /* Add SRP username if there is one */ if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the * Client Hello message */ int login_len = strlen(s->srp_ctx.login); if (login_len > 255 || login_len == 0) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } /*- * check for enough space. * 4 for the srp type type and entension length * 1 for the srp user identity * + srp user identity length */ if ((limit - ret - 5 - login_len) < 0) return NULL; /* fill in the extension */ s2n(TLSEXT_TYPE_srp, ret); s2n(login_len + 1, ret); (*ret++) = (unsigned char)login_len; memcpy(ret, s->srp_ctx.login, login_len); ret += login_len; } # endif # ifndef OPENSSL_NO_EC if (using_ecc) { /* * Add TLS extension ECPointFormats to the ClientHello message */ long lenmax; const unsigned char *pcurves, *pformats; size_t num_curves, num_formats, curves_list_len; size_t i; unsigned char *etmp; tls1_get_formatlist(s, &pformats, &num_formats); if ((lenmax = limit - ret - 5) < 0) return NULL; if (num_formats > (size_t)lenmax) return NULL; if (num_formats > 255) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats, ret); /* The point format list has 1-byte length. */ s2n(num_formats + 1, ret); *(ret++) = (unsigned char)num_formats; memcpy(ret, pformats, num_formats); ret += num_formats; /* * Add TLS extension EllipticCurves to the ClientHello message */ pcurves = s->tlsext_ellipticcurvelist; if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves)) return NULL; if ((lenmax = limit - ret - 6) < 0) return NULL; if (num_curves > (size_t)lenmax / 2) return NULL; if (num_curves > 65532 / 2) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_elliptic_curves, ret); etmp = ret + 4; /* Copy curve ID if supported */ for (i = 0; i < num_curves; i++, pcurves += 2) { if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED)) { *etmp++ = pcurves[0]; *etmp++ = pcurves[1]; } } curves_list_len = etmp - ret - 4; s2n(curves_list_len + 2, ret); s2n(curves_list_len, ret); ret += curves_list_len; } # endif /* OPENSSL_NO_EC */ if (tls_use_ticket(s)) { int ticklen; if (!s->new_session && s->session && s->session->tlsext_tick) ticklen = s->session->tlsext_ticklen; else if (s->session && s->tlsext_session_ticket && s->tlsext_session_ticket->data) { ticklen = s->tlsext_session_ticket->length; s->session->tlsext_tick = OPENSSL_malloc(ticklen); if (!s->session->tlsext_tick) return NULL; memcpy(s->session->tlsext_tick, s->tlsext_session_ticket->data, ticklen); s->session->tlsext_ticklen = ticklen; } else ticklen = 0; if (ticklen == 0 && s->tlsext_session_ticket && s->tlsext_session_ticket->data == NULL) goto skip_ext; /* * Check for enough room 2 for extension type, 2 for len rest for * ticket */ if ((long)(limit - ret - 4 - ticklen) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket, ret); s2n(ticklen, ret); if (ticklen) { memcpy(ret, s->session->tlsext_tick, ticklen); ret += ticklen; } } skip_ext: if (SSL_USE_SIGALGS(s)) { size_t salglen; const unsigned char *salg; unsigned char *etmp; salglen = tls12_get_psigalgs(s, &salg); if ((size_t)(limit - ret) < salglen + 6) return NULL; s2n(TLSEXT_TYPE_signature_algorithms, ret); etmp = ret; /* Skip over lengths for now */ ret += 4; salglen = tls12_copy_sigalgs(s, ret, salg, salglen); /* Fill in lengths */ s2n(salglen + 2, etmp); s2n(salglen, etmp); ret += salglen; } if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { int i; long extlen, idlen, itmp; OCSP_RESPID *id; idlen = 0; for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); itmp = i2d_OCSP_RESPID(id, NULL); if (itmp <= 0) return NULL; idlen += itmp + 2; } if (s->tlsext_ocsp_exts) { extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL); if (extlen < 0) return NULL; } else extlen = 0; if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); if (extlen + idlen > 0xFFF0) return NULL; s2n(extlen + idlen + 5, ret); *(ret++) = TLSEXT_STATUSTYPE_ocsp; s2n(idlen, ret); for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { /* save position of id len */ unsigned char *q = ret; id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); /* skip over id len */ ret += 2; itmp = i2d_OCSP_RESPID(id, &ret); /* write id len */ s2n(itmp, q); } s2n(extlen, ret); if (extlen > 0) i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret); } # ifndef OPENSSL_NO_HEARTBEATS /* Add Heartbeat extension */ if ((limit - ret - 4 - 1) < 0) return NULL; s2n(TLSEXT_TYPE_heartbeat, ret); s2n(1, ret); /*- * Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_TLSEXT_HB_ENABLED; # endif # ifndef OPENSSL_NO_NEXTPROTONEG if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) { /* * The client advertises an emtpy extension to indicate its support * for Next Protocol Negotiation */ if (limit - ret - 4 < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg, ret); s2n(0, ret); } # endif if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) { if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); s2n(2 + s->alpn_client_proto_list_len, ret); s2n(s->alpn_client_proto_list_len, ret); memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len); ret += s->alpn_client_proto_list_len; } # ifndef OPENSSL_NO_SRTP if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) { int el; /* Returns 0 on success!! */ if (ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp, ret); s2n(el, ret); if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } # endif custom_ext_init(&s->cert->cli_ext); /* Add custom TLS Extensions to ClientHello */ if (!custom_ext_add(s, 0, &ret, limit, al)) return NULL; # ifdef TLSEXT_TYPE_encrypt_then_mac s2n(TLSEXT_TYPE_encrypt_then_mac, ret); s2n(0, ret); # endif s2n(TLSEXT_TYPE_extended_master_secret, ret); s2n(0, ret); /* * Add padding to workaround bugs in F5 terminators. See * https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this * code works out the length of all existing extensions it MUST always * appear last. */ if (s->options & SSL_OP_TLSEXT_PADDING) { int hlen = ret - (unsigned char *)s->init_buf->data; /* * The code in s23_clnt.c to build ClientHello messages includes the * 5-byte record header in the buffer, while the code in s3_clnt.c * does not. */ if (s->state == SSL23_ST_CW_CLNT_HELLO_A) hlen -= 5; if (hlen > 0xff && hlen < 0x200) { hlen = 0x200 - hlen; if (hlen >= 4) hlen -= 4; else hlen = 0; s2n(TLSEXT_TYPE_padding, ret); s2n(hlen, ret); memset(ret, 0, hlen); ret += hlen; } } done: if ((extdatalen = ret - orig - 2) == 0) return orig; s2n(extdatalen, orig); return ret; } unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al) { int extdatalen = 0; unsigned char *orig = buf; unsigned char *ret = buf; # ifndef OPENSSL_NO_NEXTPROTONEG int next_proto_neg_seen; # endif # ifndef OPENSSL_NO_EC unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; int using_ecc = (alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe)) || (alg_a & SSL_aECDSA); using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL); # endif ret += 2; if (ret >= limit) return NULL; /* this really never occurs, but ... */ if (s->s3->send_connection_binding) { int el; if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate, ret); s2n(el, ret); if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } /* Only add RI for SSLv3 */ if (s->version == SSL3_VERSION) goto done; if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_server_name, ret); s2n(0, ret); } # ifndef OPENSSL_NO_EC if (using_ecc) { const unsigned char *plist; size_t plistlen; /* * Add TLS extension ECPointFormats to the ServerHello message */ long lenmax; tls1_get_formatlist(s, &plist, &plistlen); if ((lenmax = limit - ret - 5) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 255) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats, ret); s2n(plistlen + 1, ret); *(ret++) = (unsigned char)plistlen; memcpy(ret, plist, plistlen); ret += plistlen; } /* * Currently the server should not respond with a SupportedCurves * extension */ # endif /* OPENSSL_NO_EC */ if (s->tlsext_ticket_expected && tls_use_ticket(s)) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket, ret); s2n(0, ret); } if (s->tlsext_status_expected) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); s2n(0, ret); } # ifndef OPENSSL_NO_SRTP if (SSL_IS_DTLS(s) && s->srtp_profile) { int el; /* Returns 0 on success!! */ if(ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp, ret); s2n(el, ret); if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } # endif if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80 || (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81) && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) { const unsigned char cryptopro_ext[36] = { 0xfd, 0xe8, /* 65000 */ 0x00, 0x20, /* 32 bytes length */ 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17 }; if (limit - ret < 36) return NULL; memcpy(ret, cryptopro_ext, 36); ret += 36; } # ifndef OPENSSL_NO_HEARTBEATS /* Add Heartbeat extension if we've received one */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) { if ((limit - ret - 4 - 1) < 0) return NULL; s2n(TLSEXT_TYPE_heartbeat, ret); s2n(1, ret); /*- * Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_TLSEXT_HB_ENABLED; } # endif # ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_seen = s->s3->next_proto_neg_seen; s->s3->next_proto_neg_seen = 0; if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) { const unsigned char *npa; unsigned int npalen; int r; r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s-> ctx->next_protos_advertised_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if ((long)(limit - ret - 4 - npalen) < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg, ret); s2n(npalen, ret); memcpy(ret, npa, npalen); ret += npalen; s->s3->next_proto_neg_seen = 1; } } # endif if (!custom_ext_add(s, 1, &ret, limit, al)) return NULL; # ifdef TLSEXT_TYPE_encrypt_then_mac if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC) { /* * Don't use encrypt_then_mac if AEAD or RC4 might want to disable * for other cases too. */ if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD || s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4) s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; else { s2n(TLSEXT_TYPE_encrypt_then_mac, ret); s2n(0, ret); } } # endif if (!s->hit && s->session->flags & SSL_SESS_FLAG_EXTMS) { s2n(TLSEXT_TYPE_extended_master_secret, ret); s2n(0, ret); } if (s->s3->alpn_selected) { const unsigned char *selected = s->s3->alpn_selected; unsigned len = s->s3->alpn_selected_len; if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); s2n(3 + len, ret); s2n(1 + len, ret); *ret++ = len; memcpy(ret, selected, len); ret += len; } done: if ((extdatalen = ret - orig - 2) == 0) return orig; s2n(extdatalen, orig); return ret; } /* * tls1_alpn_handle_client_hello is called to process the ALPN extension in a * ClientHello. data: the contents of the extension, not including the type * and length. data_len: the number of bytes in |data| al: a pointer to the * alert value to send in the event of a non-zero return. returns: 0 on * success. */ static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data, unsigned data_len, int *al) { unsigned i; unsigned proto_len; const unsigned char *selected; unsigned char selected_len; int r; if (s->ctx->alpn_select_cb == NULL) return 0; if (data_len < 2) goto parse_error; /* * data should contain a uint16 length followed by a series of 8-bit, * length-prefixed strings. */ i = ((unsigned)data[0]) << 8 | ((unsigned)data[1]); data_len -= 2; data += 2; if (data_len != i) goto parse_error; if (data_len < 2) goto parse_error; for (i = 0; i < data_len;) { proto_len = data[i]; i++; if (proto_len == 0) goto parse_error; if (i + proto_len < i || i + proto_len > data_len) goto parse_error; i += proto_len; } r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len, s->ctx->alpn_select_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if (s->s3->alpn_selected) OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_malloc(selected_len); if (!s->s3->alpn_selected) { *al = SSL_AD_INTERNAL_ERROR; return -1; } memcpy(s->s3->alpn_selected, selected, selected_len); s->s3->alpn_selected_len = selected_len; } return 0; parse_error: *al = SSL_AD_DECODE_ERROR; return -1; } # ifndef OPENSSL_NO_EC /*- * ssl_check_for_safari attempts to fingerprint Safari using OS X * SecureTransport using the TLS extension block in |d|, of length |n|. * Safari, since 10.6, sends exactly these extensions, in this order: * SNI, * elliptic_curves * ec_point_formats * * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8, * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them. * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from * 10.8..10.8.3 (which don't work). */ static void ssl_check_for_safari(SSL *s, const unsigned char *data, const unsigned char *d, int n) { unsigned short type, size; static const unsigned char kSafariExtensionsBlock[] = { 0x00, 0x0a, /* elliptic_curves extension */ 0x00, 0x08, /* 8 bytes */ 0x00, 0x06, /* 6 bytes of curve ids */ 0x00, 0x17, /* P-256 */ 0x00, 0x18, /* P-384 */ 0x00, 0x19, /* P-521 */ 0x00, 0x0b, /* ec_point_formats */ 0x00, 0x02, /* 2 bytes */ 0x01, /* 1 point format */ 0x00, /* uncompressed */ }; /* The following is only present in TLS 1.2 */ static const unsigned char kSafariTLS12ExtensionsBlock[] = { 0x00, 0x0d, /* signature_algorithms */ 0x00, 0x0c, /* 12 bytes */ 0x00, 0x0a, /* 10 bytes */ 0x05, 0x01, /* SHA-384/RSA */ 0x04, 0x01, /* SHA-256/RSA */ 0x02, 0x01, /* SHA-1/RSA */ 0x04, 0x03, /* SHA-256/ECDSA */ 0x02, 0x03, /* SHA-1/ECDSA */ }; if (data >= (d + n - 2)) return; data += 2; if (data > (d + n - 4)) return; n2s(data, type); n2s(data, size); if (type != TLSEXT_TYPE_server_name) return; if (data + size > d + n) return; data += size; if (TLS1_get_client_version(s) >= TLS1_2_VERSION) { const size_t len1 = sizeof(kSafariExtensionsBlock); const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock); if (data + len1 + len2 != d + n) return; if (memcmp(data, kSafariExtensionsBlock, len1) != 0) return; if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0) return; } else { const size_t len = sizeof(kSafariExtensionsBlock); if (data + len != d + n) return; if (memcmp(data, kSafariExtensionsBlock, len) != 0) return; } s->s3->is_probably_safari = 1; } # endif /* !OPENSSL_NO_EC */ static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al) { unsigned short type; unsigned short size; unsigned short len; unsigned char *data = *p; int renegotiate_seen = 0; s->servername_done = 0; s->tlsext_status_type = -1; # ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; # endif if (s->s3->alpn_selected) { OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; } # ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | SSL_TLSEXT_HB_DONT_SEND_REQUESTS); # endif # ifndef OPENSSL_NO_EC if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG) ssl_check_for_safari(s, data, d, n); # endif /* !OPENSSL_NO_EC */ /* Clear any signature algorithms extension received */ if (s->cert->peer_sigalgs) { OPENSSL_free(s->cert->peer_sigalgs); s->cert->peer_sigalgs = NULL; } # ifdef TLSEXT_TYPE_encrypt_then_mac s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; # endif # ifndef OPENSSL_NO_SRP if (s->srp_ctx.login != NULL) { OPENSSL_free(s->srp_ctx.login); s->srp_ctx.login = NULL; } # endif s->srtp_profile = NULL; if (data >= (d + n - 2)) goto ri_check; n2s(data, len); if (data > (d + n - len)) goto ri_check; while (data <= (d + n - 4)) { n2s(data, type); n2s(data, size); if (data + size > (d + n)) goto ri_check; if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg); if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_clienthello_renegotiate_ext(s, data, size, al)) return 0; renegotiate_seen = 1; } else if (s->version == SSL3_VERSION) { } /*- * The servername extension is treated as follows: * * - Only the hostname type is supported with a maximum length of 255. * - The servername is rejected if too long or if it contains zeros, * in which case an fatal alert is generated. * - The servername field is maintained together with the session cache. * - When a session is resumed, the servername call back invoked in order * to allow the application to position itself to the right context. * - The servername is acknowledged if it is new for a session or when * it is identical to a previously used for the same session. * Applications can control the behaviour. They can at any time * set a 'desirable' servername for a new SSL object. This can be the * case for example with HTTPS when a Host: header field is received and * a renegotiation is requested. In this case, a possible servername * presented in the new client hello is only acknowledged if it matches * the value of the Host: field. * - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION * if they provide for changing an explicit servername context for the * session, i.e. when the session has been established with a servername * extension. * - On session reconnect, the servername extension may be absent. * */ else if (type == TLSEXT_TYPE_server_name) { unsigned char *sdata; int servname_type; int dsize; if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data, dsize); size -= 2; if (dsize > size) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; while (dsize > 3) { servname_type = *(sdata++); n2s(sdata, len); dsize -= 3; if (len > dsize) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->servername_done == 0) switch (servname_type) { case TLSEXT_NAMETYPE_host_name: if (!s->hit) { if (s->session->tlsext_hostname) { *al = SSL_AD_DECODE_ERROR; return 0; } if (len > TLSEXT_MAXLEN_host_name) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } if ((s->session->tlsext_hostname = OPENSSL_malloc(len + 1)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->session->tlsext_hostname, sdata, len); s->session->tlsext_hostname[len] = '\0'; if (strlen(s->session->tlsext_hostname) != len) { OPENSSL_free(s->session->tlsext_hostname); s->session->tlsext_hostname = NULL; *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } s->servername_done = 1; } else s->servername_done = s->session->tlsext_hostname && strlen(s->session->tlsext_hostname) == len && strncmp(s->session->tlsext_hostname, (char *)sdata, len) == 0; break; default: break; } dsize -= len; } if (dsize != 0) { *al = SSL_AD_DECODE_ERROR; return 0; } } # ifndef OPENSSL_NO_SRP else if (type == TLSEXT_TYPE_srp) { if (size <= 0 || ((len = data[0])) != (size - 1)) { *al = SSL_AD_DECODE_ERROR; return 0; } if (s->srp_ctx.login != NULL) { *al = SSL_AD_DECODE_ERROR; return 0; } if ((s->srp_ctx.login = OPENSSL_malloc(len + 1)) == NULL) return -1; memcpy(s->srp_ctx.login, &data[1], len); s->srp_ctx.login[len] = '\0'; if (strlen(s->srp_ctx.login) != len) { *al = SSL_AD_DECODE_ERROR; return 0; } } # endif # ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { unsigned char *sdata = data; int ecpointformatlist_length = *(sdata++); if (ecpointformatlist_length != size - 1 || ecpointformatlist_length < 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { if (s->session->tlsext_ecpointformatlist) { OPENSSL_free(s->session->tlsext_ecpointformatlist); s->session->tlsext_ecpointformatlist = NULL; } s->session->tlsext_ecpointformatlist_length = 0; if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length; memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length); } } else if (type == TLSEXT_TYPE_elliptic_curves) { unsigned char *sdata = data; int ellipticcurvelist_length = (*(sdata++) << 8); ellipticcurvelist_length += (*(sdata++)); if (ellipticcurvelist_length != size - 2 || ellipticcurvelist_length < 1 || /* Each NamedCurve is 2 bytes. */ ellipticcurvelist_length & 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { if (s->session->tlsext_ellipticcurvelist) { *al = TLS1_AD_DECODE_ERROR; return 0; } s->session->tlsext_ellipticcurvelist_length = 0; if ((s->session->tlsext_ellipticcurvelist = OPENSSL_malloc(ellipticcurvelist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ellipticcurvelist_length = ellipticcurvelist_length; memcpy(s->session->tlsext_ellipticcurvelist, sdata, ellipticcurvelist_length); } } # endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } else if (type == TLSEXT_TYPE_signature_algorithms) { int dsize; if (s->cert->peer_sigalgs || size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data, dsize); size -= 2; if (dsize != size || dsize & 1 || !dsize) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!tls1_save_sigalgs(s, data, dsize)) { *al = SSL_AD_DECODE_ERROR; return 0; } } else if (type == TLSEXT_TYPE_status_request) { if (size < 5) { *al = SSL_AD_DECODE_ERROR; return 0; } s->tlsext_status_type = *data++; size--; if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { const unsigned char *sdata; int dsize; /* Read in responder_id_list */ n2s(data, dsize); size -= 2; if (dsize > size) { *al = SSL_AD_DECODE_ERROR; return 0; } while (dsize > 0) { OCSP_RESPID *id; int idsize; if (dsize < 4) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data, idsize); dsize -= 2 + idsize; size -= 2 + idsize; if (dsize < 0) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; data += idsize; id = d2i_OCSP_RESPID(NULL, &sdata, idsize); if (!id) { *al = SSL_AD_DECODE_ERROR; return 0; } if (data != sdata) { OCSP_RESPID_free(id); *al = SSL_AD_DECODE_ERROR; return 0; } if (!s->tlsext_ocsp_ids && !(s->tlsext_ocsp_ids = sk_OCSP_RESPID_new_null())) { OCSP_RESPID_free(id); *al = SSL_AD_INTERNAL_ERROR; return 0; } if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) { OCSP_RESPID_free(id); *al = SSL_AD_INTERNAL_ERROR; return 0; } } /* Read in request_extensions */ if (size < 2) { *al = SSL_AD_DECODE_ERROR; return 0; } n2s(data, dsize); size -= 2; if (dsize != size) { *al = SSL_AD_DECODE_ERROR; return 0; } sdata = data; if (dsize > 0) { if (s->tlsext_ocsp_exts) { sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free); } s->tlsext_ocsp_exts = d2i_X509_EXTENSIONS(NULL, &sdata, dsize); if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) { *al = SSL_AD_DECODE_ERROR; return 0; } } } /* * We don't know what to do with any other type * so ignore it. */ else s->tlsext_status_type = -1; } # ifndef OPENSSL_NO_HEARTBEATS else if (type == TLSEXT_TYPE_heartbeat) { switch (data[0]) { case 0x01: /* Client allows us to send HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; break; case 0x02: /* Client doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } # endif # ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0 && s->s3->alpn_selected == NULL) { /*- * We shouldn't accept this extension on a * renegotiation. * * s->new_session will be set on renegotiation, but we * probably shouldn't rely that it couldn't be set on * the initial renegotation too in certain cases (when * there's some other reason to disallow resuming an * earlier session -- the current code won't be doing * anything like that, but this might change). * * A valid sign that there's been a previous handshake * in this connection is if s->s3->tmp.finish_md_len > * 0. (We are talking about a check that will happen * in the Hello protocol round, well before a new * Finished message could have been computed.) */ s->s3->next_proto_neg_seen = 1; } # endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation && s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) { if (tls1_alpn_handle_client_hello(s, data, size, al) != 0) return 0; # ifndef OPENSSL_NO_NEXTPROTONEG /* ALPN takes precedence over NPN. */ s->s3->next_proto_neg_seen = 0; # endif } /* session ticket processed earlier */ # ifndef OPENSSL_NO_SRTP else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s) && type == TLSEXT_TYPE_use_srtp) { if (ssl_parse_clienthello_use_srtp_ext(s, data, size, al)) return 0; } # endif # ifdef TLSEXT_TYPE_encrypt_then_mac else if (type == TLSEXT_TYPE_encrypt_then_mac) s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC; # endif else if (type == TLSEXT_TYPE_extended_master_secret) { if (!s->hit) s->session->flags |= SSL_SESS_FLAG_EXTMS; } /* * If this ClientHello extension was unhandled and this is a * nonresumed connection, check whether the extension is a custom * TLS Extension (has a custom_srv_ext_record), and if so call the * callback and record the extension number so that an appropriate * ServerHello may be later returned. */ else if (!s->hit) { if (custom_ext_parse(s, 1, type, data, size, al) <= 0) return 0; } data += size; } *p = data; ri_check: /* Need RI if renegotiating */ if (!renegotiate_seen && s->renegotiate && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } return 1; } int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n) { int al = -1; custom_ext_init(&s->cert->srv_ext); if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } if (ssl_check_clienthello_tlsext_early(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT); return 0; } return 1; } # ifndef OPENSSL_NO_NEXTPROTONEG /* * ssl_next_proto_validate validates a Next Protocol Negotiation block. No * elements of zero length are allowed and the set of elements must exactly * fill the length of the block. */ static char ssl_next_proto_validate(unsigned char *d, unsigned len) { unsigned int off = 0; while (off < len) { if (d[off] == 0) return 0; off += d[off]; off++; } return off == len; } # endif static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al) { unsigned short length; unsigned short type; unsigned short size; unsigned char *data = *p; int tlsext_servername = 0; int renegotiate_seen = 0; # ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; # endif s->tlsext_ticket_expected = 0; if (s->s3->alpn_selected) { OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; } # ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED | SSL_TLSEXT_HB_DONT_SEND_REQUESTS); # endif # ifdef TLSEXT_TYPE_encrypt_then_mac s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; # endif if (data >= (d + n - 2)) goto ri_check; n2s(data, length); if (data + length != d + n) { *al = SSL_AD_DECODE_ERROR; return 0; } while (data <= (d + n - 4)) { n2s(data, type); n2s(data, size); if (data + size > (d + n)) goto ri_check; if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg); if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_serverhello_renegotiate_ext(s, data, size, al)) return 0; renegotiate_seen = 1; } else if (s->version == SSL3_VERSION) { } else if (type == TLSEXT_TYPE_server_name) { if (s->tlsext_hostname == NULL || size > 0) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } tlsext_servername = 1; } # ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { unsigned char *sdata = data; int ecpointformatlist_length = *(sdata++); if (ecpointformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { s->session->tlsext_ecpointformatlist_length = 0; if (s->session->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->session->tlsext_ecpointformatlist); if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length; memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length); } } # endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } if (!tls_use_ticket(s) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } s->tlsext_ticket_expected = 1; } else if (type == TLSEXT_TYPE_status_request) { /* * MUST be empty and only sent if we've requested a status * request message. */ if ((s->tlsext_status_type == -1) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* Set flag to expect CertificateStatus message */ s->tlsext_status_expected = 1; } # ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { unsigned char *selected; unsigned char selected_len; /* We must have requested it. */ if (s->ctx->next_proto_select_cb == NULL) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* The data must be valid */ if (!ssl_next_proto_validate(data, size)) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (s-> ctx->next_proto_select_cb(s, &selected, &selected_len, data, size, s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->next_proto_negotiated = OPENSSL_malloc(selected_len); if (!s->next_proto_negotiated) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->next_proto_negotiated, selected, selected_len); s->next_proto_negotiated_len = selected_len; s->s3->next_proto_neg_seen = 1; } # endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) { unsigned len; /* We must have requested it. */ if (s->alpn_client_proto_list == NULL) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } if (size < 4) { *al = TLS1_AD_DECODE_ERROR; return 0; } /*- * The extension data consists of: * uint16 list_length * uint8 proto_length; * uint8 proto[proto_length]; */ len = data[0]; len <<= 8; len |= data[1]; if (len != (unsigned)size - 2) { *al = TLS1_AD_DECODE_ERROR; return 0; } len = data[2]; if (len != (unsigned)size - 3) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (s->s3->alpn_selected) OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_malloc(len); if (!s->s3->alpn_selected) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->s3->alpn_selected, data + 3, len); s->s3->alpn_selected_len = len; } # ifndef OPENSSL_NO_HEARTBEATS else if (type == TLSEXT_TYPE_heartbeat) { switch (data[0]) { case 0x01: /* Server allows us to send HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; break; case 0x02: /* Server doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } # endif # ifndef OPENSSL_NO_SRTP else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) { if (ssl_parse_serverhello_use_srtp_ext(s, data, size, al)) return 0; } # endif # ifdef TLSEXT_TYPE_encrypt_then_mac else if (type == TLSEXT_TYPE_encrypt_then_mac) { /* Ignore if inappropriate ciphersuite */ if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4) s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC; } # endif else if (type == TLSEXT_TYPE_extended_master_secret) { if (!s->hit) s->session->flags |= SSL_SESS_FLAG_EXTMS; } /* * If this extension type was not otherwise handled, but matches a * custom_cli_ext_record, then send it to the c callback */ else if (custom_ext_parse(s, 0, type, data, size, al) <= 0) return 0; data += size; } if (data != d + n) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!s->hit && tlsext_servername == 1) { if (s->tlsext_hostname) { if (s->session->tlsext_hostname == NULL) { s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname); if (!s->session->tlsext_hostname) { *al = SSL_AD_UNRECOGNIZED_NAME; return 0; } } else { *al = SSL_AD_DECODE_ERROR; return 0; } } } *p = data; ri_check: /* * Determine if we need to see RI. Strictly speaking if we want to avoid * an attack we should *always* see RI even on initial server hello * because the client doesn't see any renegotiation during an attack. * However this would mean we could not connect to any server which * doesn't support RI so for the immediate future tolerate RI absence on * initial connect only. */ if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } return 1; } int ssl_prepare_clienthello_tlsext(SSL *s) { return 1; } int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; } static int ssl_check_clienthello_tlsext_early(SSL *s) { int ret = SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; # ifndef OPENSSL_NO_EC /* * The handling of the ECPointFormats extension is done elsewhere, namely * in ssl3_choose_cipher in s3_lib.c. */ /* * The handling of the EllipticCurves extension is done elsewhere, namely * in ssl3_choose_cipher in s3_lib.c. */ # endif if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s-> initial_ctx->tlsext_servername_arg); switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done = 0; default: return 1; } } int tls1_set_server_sigalgs(SSL *s) { int al; size_t i; /* Clear any shared sigtnature algorithms */ if (s->cert->shared_sigalgs) { OPENSSL_free(s->cert->shared_sigalgs); s->cert->shared_sigalgs = NULL; s->cert->shared_sigalgslen = 0; } /* Clear certificate digests and validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) { s->cert->pkeys[i].digest = NULL; s->cert->pkeys[i].valid_flags = 0; } /* If sigalgs received process it. */ if (s->cert->peer_sigalgs) { if (!tls1_process_sigalgs(s)) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE); al = SSL_AD_INTERNAL_ERROR; goto err; } /* Fatal error is no shared signature algorithms */ if (!s->cert->shared_sigalgs) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGATURE_ALGORITHMS); al = SSL_AD_ILLEGAL_PARAMETER; goto err; } } else ssl_cert_set_default_md(s->cert); return 1; err: ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } int ssl_check_clienthello_tlsext_late(SSL *s) { int ret = SSL_TLSEXT_ERR_OK; int al; /* * If status request then ask callback what to do. Note: this must be * called after servername callbacks in case the certificate has changed, * and must be called after the cipher has been chosen because this may * influence which certificate is sent */ if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) { int r; CERT_PKEY *certpkey; certpkey = ssl_get_server_send_pkey(s); /* If no certificate can't return certificate status */ if (certpkey == NULL) { s->tlsext_status_expected = 0; return 1; } /* * Set current certificate to one we will use so SSL_get_certificate * et al can pick it up. */ s->cert->key = certpkey; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); switch (r) { /* We don't want to send a status request response */ case SSL_TLSEXT_ERR_NOACK: s->tlsext_status_expected = 0; break; /* status request response should be sent */ case SSL_TLSEXT_ERR_OK: if (s->tlsext_ocsp_resp) s->tlsext_status_expected = 1; else s->tlsext_status_expected = 0; break; /* something bad happened */ case SSL_TLSEXT_ERR_ALERT_FATAL: ret = SSL_TLSEXT_ERR_ALERT_FATAL; al = SSL_AD_INTERNAL_ERROR; goto err; } } else s->tlsext_status_expected = 0; err: switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; default: return 1; } } int ssl_check_serverhello_tlsext(SSL *s) { int ret = SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; # ifndef OPENSSL_NO_EC /* * If we are client and using an elliptic curve cryptography cipher * suite, then if server returns an EC point formats lists extension it * must contain uncompressed. */ unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) && (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) && ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe)) || (alg_a & SSL_aECDSA))) { /* we are using an ECC cipher */ size_t i; unsigned char *list; int found_uncompressed = 0; list = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) { if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) { found_uncompressed = 1; break; } } if (!found_uncompressed) { SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT, SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST); return -1; } } ret = SSL_TLSEXT_ERR_OK; # endif /* OPENSSL_NO_EC */ if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s-> initial_ctx->tlsext_servername_arg); /* * If we've requested certificate status and we wont get one tell the * callback */ if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected) && s->ctx && s->ctx->tlsext_status_cb) { int r; /* * Set resp to NULL, resplen to -1 so callback knows there is no * response. */ if (s->tlsext_ocsp_resp) { OPENSSL_free(s->tlsext_ocsp_resp); s->tlsext_ocsp_resp = NULL; } s->tlsext_ocsp_resplen = -1; r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); if (r == 0) { al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } if (r < 0) { al = SSL_AD_INTERNAL_ERROR; ret = SSL_TLSEXT_ERR_ALERT_FATAL; } } switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done = 0; default: return 1; } } int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n) { int al = -1; if (s->version < SSL3_VERSION) return 1; if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } if (ssl_check_serverhello_tlsext(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT); return 0; } return 1; } /*- * Since the server cache lookup is done early on in the processing of the * ClientHello, and other operations depend on the result, we need to handle * any TLS session ticket extension at the same time. * * session_id: points at the session ID in the ClientHello. This code will * read past the end of this in order to parse out the session ticket * extension, if any. * len: the length of the session ID. * limit: a pointer to the first byte after the ClientHello. * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * If s->tls_session_secret_cb is set then we are expecting a pre-shared key * ciphersuite, in which case we have no use for session tickets and one will * never be decrypted, nor will s->tlsext_ticket_expected be set to 1. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 0: no ticket was found (or was ignored, based on settings). * 1: a zero length extension was found, indicating that the client supports * session tickets but doesn't currently have one to offer. * 2: either s->tls_session_secret_cb was set, or a ticket was offered but * couldn't be decrypted because of a non-fatal error. * 3: a ticket was successfully decrypted and *ret was set. * * Side effects: * Sets s->tlsext_ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket. * Otherwise, s->tlsext_ticket_expected is set to 0. */ int tls1_process_ticket(SSL *s, unsigned char *session_id, int len, const unsigned char *limit, SSL_SESSION **ret) { /* Point after session ID in client hello */ const unsigned char *p = session_id + len; unsigned short i; *ret = NULL; s->tlsext_ticket_expected = 0; /* * If tickets disabled behave as if no ticket present to permit stateful * resumption. */ if (!tls_use_ticket(s)) return 0; if ((s->version <= SSL3_VERSION) || !limit) return 0; if (p >= limit) return -1; /* Skip past DTLS cookie */ if (SSL_IS_DTLS(s)) { i = *(p++); p += i; if (p >= limit) return -1; } /* Skip past cipher list */ n2s(p, i); p += i; if (p >= limit) return -1; /* Skip past compression algorithm list */ i = *(p++); p += i; if (p > limit) return -1; /* Now at start of extensions */ if ((p + 2) >= limit) return 0; n2s(p, i); while ((p + 4) <= limit) { unsigned short type, size; n2s(p, type); n2s(p, size); if (p + size > limit) return 0; if (type == TLSEXT_TYPE_session_ticket) { int r; if (size == 0) { /* * The client will accept a ticket but doesn't currently have * one. */ s->tlsext_ticket_expected = 1; return 1; } if (s->tls_session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger * abbreviated handshake based on external mechanism to * calculate the master secret later. */ return 2; } r = tls_decrypt_ticket(s, p, size, session_id, len, ret); switch (r) { case 2: /* ticket couldn't be decrypted */ s->tlsext_ticket_expected = 1; return 2; case 3: /* ticket was decrypted */ return r; case 4: /* ticket decrypted but need to renew */ s->tlsext_ticket_expected = 1; return 3; default: /* fatal error */ return -1; } } p += size; } return 0; } /*- * tls_decrypt_ticket attempts to decrypt a session ticket. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extenion. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 2: the ticket couldn't be decrypted. * 3: a ticket was successfully decrypted and *psess was set. * 4: same as 3, but the ticket needs to be renewed. */ static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess) { SSL_SESSION *sess; unsigned char *sdec; const unsigned char *p; int slen, mlen, renew_ticket = 0; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX hctx; EVP_CIPHER_CTX ctx; SSL_CTX *tctx = s->initial_ctx; /* Need at least keyname + iv + some encrypted data */ if (eticklen < 48) return 2; /* Initialize session ticket encryption and HMAC contexts */ HMAC_CTX_init(&hctx); EVP_CIPHER_CTX_init(&ctx); if (tctx->tlsext_ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx, 0); if (rv < 0) return -1; if (rv == 0) return 2; if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) return 2; HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, EVP_sha256(), NULL); EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, tctx->tlsext_tick_aes_key, etick + 16); } /* * Attempt to process session ticket, first conduct sanity and integrity * checks on ticket. */ mlen = HMAC_size(&hctx); if (mlen < 0) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ HMAC_Update(&hctx, etick, eticklen); HMAC_Final(&hctx, tick_hmac, NULL); HMAC_CTX_cleanup(&hctx); if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { EVP_CIPHER_CTX_cleanup(&ctx); return 2; } /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx); eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx); sdec = OPENSSL_malloc(eticklen); if (!sdec) { EVP_CIPHER_CTX_cleanup(&ctx); return -1; } EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen); if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) { EVP_CIPHER_CTX_cleanup(&ctx); OPENSSL_free(sdec); return 2; } slen += mlen; EVP_CIPHER_CTX_cleanup(&ctx); p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); OPENSSL_free(sdec); if (sess) { /* * The session ID, if non-empty, is used by some clients to detect * that the ticket has been accepted. So we copy it to the session * structure. If it is empty set length to zero as required by * standard. */ if (sesslen) memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; *psess = sess; if (renew_ticket) return 4; else return 3; } ERR_clear_error(); /* * For session parse failure, indicate that we need to send a new ticket. */ return 2; } /* Tables to translate from NIDs to TLS v1.2 ids */ typedef struct { int nid; int id; } tls12_lookup; static const tls12_lookup tls12_md[] = { {NID_md5, TLSEXT_hash_md5}, {NID_sha1, TLSEXT_hash_sha1}, {NID_sha224, TLSEXT_hash_sha224}, {NID_sha256, TLSEXT_hash_sha256}, {NID_sha384, TLSEXT_hash_sha384}, {NID_sha512, TLSEXT_hash_sha512} }; static const tls12_lookup tls12_sig[] = { {EVP_PKEY_RSA, TLSEXT_signature_rsa}, {EVP_PKEY_DSA, TLSEXT_signature_dsa}, {EVP_PKEY_EC, TLSEXT_signature_ecdsa} }; static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if (table[i].nid == nid) return table[i].id; } return -1; } static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if ((table[i].id) == id) return table[i].nid; } return NID_undef; } int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md) { int sig_id, md_id; if (!md) return 0; md_id = tls12_find_id(EVP_MD_type(md), tls12_md, sizeof(tls12_md) / sizeof(tls12_lookup)); if (md_id == -1) return 0; sig_id = tls12_get_sigid(pk); if (sig_id == -1) return 0; p[0] = (unsigned char)md_id; p[1] = (unsigned char)sig_id; return 1; } int tls12_get_sigid(const EVP_PKEY *pk) { return tls12_find_id(pk->type, tls12_sig, sizeof(tls12_sig) / sizeof(tls12_lookup)); } typedef struct { int nid; int secbits; const EVP_MD *(*mfunc) (void); } tls12_hash_info; static const tls12_hash_info tls12_md_info[] = { # ifdef OPENSSL_NO_MD5 {NID_md5, 64, 0}, # else {NID_md5, 64, EVP_md5}, # endif {NID_sha1, 80, EVP_sha1}, {NID_sha224, 112, EVP_sha224}, {NID_sha256, 128, EVP_sha256}, {NID_sha384, 192, EVP_sha384}, {NID_sha512, 256, EVP_sha512} }; static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg) { if (hash_alg == 0) return NULL; if (hash_alg > sizeof(tls12_md_info) / sizeof(tls12_md_info[0])) return NULL; return tls12_md_info + hash_alg - 1; } const EVP_MD *tls12_get_hash(unsigned char hash_alg) { const tls12_hash_info *inf; if (hash_alg == TLSEXT_hash_md5 && FIPS_mode()) return NULL; inf = tls12_get_hash_info(hash_alg); if (!inf || !inf->mfunc) return NULL; return inf->mfunc(); } static int tls12_get_pkey_idx(unsigned char sig_alg) { switch (sig_alg) { # ifndef OPENSSL_NO_RSA case TLSEXT_signature_rsa: return SSL_PKEY_RSA_SIGN; # endif # ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: return SSL_PKEY_DSA_SIGN; # endif # ifndef OPENSSL_NO_EC case TLSEXT_signature_ecdsa: return SSL_PKEY_ECC; # endif } return -1; } /* Convert TLS 1.2 signature algorithm extension values into NIDs */ static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid, int *psignhash_nid, const unsigned char *data) { int sign_nid = 0, hash_nid = 0; if (!phash_nid && !psign_nid && !psignhash_nid) return; if (phash_nid || psignhash_nid) { hash_nid = tls12_find_nid(data[0], tls12_md, sizeof(tls12_md) / sizeof(tls12_lookup)); if (phash_nid) *phash_nid = hash_nid; } if (psign_nid || psignhash_nid) { sign_nid = tls12_find_nid(data[1], tls12_sig, sizeof(tls12_sig) / sizeof(tls12_lookup)); if (psign_nid) *psign_nid = sign_nid; } if (psignhash_nid) { if (sign_nid && hash_nid) OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid); else *psignhash_nid = NID_undef; } } /* Check to see if a signature algorithm is allowed */ static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp) { /* See if we have an entry in the hash table and it is enabled */ const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]); if (!hinf || !hinf->mfunc) return 0; /* See if public key algorithm allowed */ if (tls12_get_pkey_idx(ptmp[1]) == -1) return 0; /* Finally see if security callback allows it */ return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp); } /* * Get a mask of disabled public key algorithms based on supported signature * algorithms. For example if no signature algorithm supports RSA then RSA is * disabled. */ void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op) { const unsigned char *sigalgs; size_t i, sigalgslen; int have_rsa = 0, have_dsa = 0, have_ecdsa = 0; /* * Now go through all signature algorithms seeing if we support any for * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep * down calls to security callback only check if we have to. */ sigalgslen = tls12_get_psigalgs(s, &sigalgs); for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) { switch (sigalgs[1]) { # ifndef OPENSSL_NO_RSA case TLSEXT_signature_rsa: if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs)) have_rsa = 1; break; # endif # ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs)) have_dsa = 1; break; # endif # ifndef OPENSSL_NO_EC case TLSEXT_signature_ecdsa: if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs)) have_ecdsa = 1; break; # endif } } if (!have_rsa) *pmask_a |= SSL_aRSA; if (!have_dsa) *pmask_a |= SSL_aDSS; if (!have_ecdsa) *pmask_a |= SSL_aECDSA; } size_t tls12_copy_sigalgs(SSL *s, unsigned char *out, const unsigned char *psig, size_t psiglen) { unsigned char *tmpout = out; size_t i; for (i = 0; i < psiglen; i += 2, psig += 2) { if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig)) { *tmpout++ = psig[0]; *tmpout++ = psig[1]; } } return tmpout - out; } /* Given preference and allowed sigalgs set shared sigalgs */ static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig, const unsigned char *pref, size_t preflen, const unsigned char *allow, size_t allowlen) { const unsigned char *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) { /* Skip disabled hashes or signature algorithms */ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp)) continue; for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) { if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) { nmatch++; if (shsig) { shsig->rhash = ptmp[0]; shsig->rsign = ptmp[1]; tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid, &shsig->signandhash_nid, ptmp); shsig++; } break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const unsigned char *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; TLS_SIGALGS *salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); if (c->shared_sigalgs) { OPENSSL_free(c->shared_sigalgs); c->shared_sigalgs = NULL; c->shared_sigalgslen = 0; } /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, &conf); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = c->peer_sigalgs; allowlen = c->peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = c->peer_sigalgs; preflen = c->peer_sigalgslen; } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS)); if (!salgs) return 0; nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; } c->shared_sigalgs = salgs; c->shared_sigalgslen = nmatch; return 1; } /* Set preferred digest for each key type */ int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize) { CERT *c = s->cert; /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Should never happen */ if (!c) return 0; if (c->peer_sigalgs) OPENSSL_free(c->peer_sigalgs); c->peer_sigalgs = OPENSSL_malloc(dsize); if (!c->peer_sigalgs) return 0; c->peer_sigalgslen = dsize; memcpy(c->peer_sigalgs, data, dsize); return 1; } int tls1_process_sigalgs(SSL *s) { int idx; size_t i; const EVP_MD *md; CERT *c = s->cert; TLS_SIGALGS *sigptr; if (!tls1_set_shared_sigalgs(s)) return 0; # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { /* * Use first set signature preference to force message digest, * ignoring any peer preferences. */ const unsigned char *sigs = NULL; if (s->server) sigs = c->conf_sigalgs; else sigs = c->client_sigalgs; if (sigs) { idx = tls12_get_pkey_idx(sigs[1]); md = tls12_get_hash(sigs[0]); c->pkeys[idx].digest = md; c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; if (idx == SSL_PKEY_RSA_SIGN) { c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN; c->pkeys[SSL_PKEY_RSA_ENC].digest = md; } } } # endif for (i = 0, sigptr = c->shared_sigalgs; i < c->shared_sigalgslen; i++, sigptr++) { idx = tls12_get_pkey_idx(sigptr->rsign); if (idx > 0 && c->pkeys[idx].digest == NULL) { md = tls12_get_hash(sigptr->rhash); c->pkeys[idx].digest = md; c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN; if (idx == SSL_PKEY_RSA_SIGN) { c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN; c->pkeys[SSL_PKEY_RSA_ENC].digest = md; } } } /* * In strict mode leave unset digests as NULL to indicate we can't use * the certificate for signing. */ if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { /* * Set any remaining keys to default values. NOTE: if alg is not * supported it stays as NULL. */ # ifndef OPENSSL_NO_DSA if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest) c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1(); # endif # ifndef OPENSSL_NO_RSA if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) { c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1(); c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1(); } # endif # ifndef OPENSSL_NO_EC if (!c->pkeys[SSL_PKEY_ECC].digest) c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1(); # endif } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const unsigned char *psig = s->cert->peer_sigalgs; if (psig == NULL) return 0; if (idx >= 0) { idx <<= 1; if (idx >= (int)s->cert->peer_sigalgslen) return 0; psig += idx; if (rhash) *rhash = psig[0]; if (rsig) *rsig = psig[1]; tls1_lookup_sigalg(phash, psign, psignhash, psig); } return s->cert->peer_sigalgslen / 2; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs; if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) return 0; shsigalgs += idx; if (phash) *phash = shsigalgs->hash_nid; if (psign) *psign = shsigalgs->sign_nid; if (psignhash) *psignhash = shsigalgs->signandhash_nid; if (rsig) *rsig = shsigalgs->rsign; if (rhash) *rhash = shsigalgs->rhash; return s->cert->shared_sigalgslen; } # ifndef OPENSSL_NO_HEARTBEATS int tls1_process_heartbeat(SSL *s) { unsigned char *p = &s->s3->rrec.data[0], *pl; unsigned short hbtype; unsigned int payload; unsigned int padding = 16; /* Use minimum padding */ if (s->msg_callback) s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT, &s->s3->rrec.data[0], s->s3->rrec.length, s, s->msg_callback_arg); /* Read type and payload length first */ if (1 + 2 + 16 > s->s3->rrec.length) return 0; /* silently discard */ hbtype = *p++; n2s(p, payload); if (1 + 2 + payload + 16 > s->s3->rrec.length) return 0; /* silently discard per RFC 6520 sec. 4 */ pl = p; if (hbtype == TLS1_HB_REQUEST) { unsigned char *buffer, *bp; int r; /* * Allocate memory for the response, size is 1 bytes message type, * plus 2 bytes payload length, plus payload, plus padding */ buffer = OPENSSL_malloc(1 + 2 + payload + padding); if (buffer == NULL) { SSLerr(SSL_F_TLS1_PROCESS_HEARTBEAT, ERR_R_MALLOC_FAILURE); return -1; } bp = buffer; /* Enter response type, length and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); bp += payload; /* Random padding */ if (RAND_bytes(bp, padding) <= 0) { OPENSSL_free(buffer); return -1; } r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding); if (r >= 0 && s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding, s, s->msg_callback_arg); OPENSSL_free(buffer); if (r < 0) return r; } else if (hbtype == TLS1_HB_RESPONSE) { unsigned int seq; /* * We only send sequence numbers (2 bytes unsigned int), and 16 * random bytes, so we just try to read the sequence number */ n2s(pl, seq); if (payload == 18 && seq == s->tlsext_hb_seq) { s->tlsext_hb_seq++; s->tlsext_hb_pending = 0; } } return 0; } int tls1_heartbeat(SSL *s) { unsigned char *buf, *p; int ret = -1; unsigned int payload = 18; /* Sequence number + random bytes */ unsigned int padding = 16; /* Use minimum padding */ /* Only send if peer supports and accepts HB requests... */ if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) || s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) { SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT); return -1; } /* ...and there is none in flight yet... */ if (s->tlsext_hb_pending) { SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING); return -1; } /* ...and no handshake in progress. */ if (SSL_in_init(s) || s->in_handshake) { SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE); return -1; } /* * Check if padding is too long, payload and padding must not exceed 2^14 * - 3 = 16381 bytes in total. */ OPENSSL_assert(payload + padding <= 16381); /*- * Create HeartBeat message, we just use a sequence number * as payload to distuingish different messages and add * some random stuff. * - Message Type, 1 byte * - Payload Length, 2 bytes (unsigned int) * - Payload, the sequence number (2 bytes uint) * - Payload, random bytes (16 bytes uint) * - Padding */ buf = OPENSSL_malloc(1 + 2 + payload + padding); if (buf == NULL) { SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_MALLOC_FAILURE); return -1; } p = buf; /* Message Type */ *p++ = TLS1_HB_REQUEST; /* Payload length (18 bytes here) */ s2n(payload, p); /* Sequence number */ s2n(s->tlsext_hb_seq, p); /* 16 random bytes */ if (RAND_bytes(p, 16) <= 0) { SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); goto err; } p += 16; /* Random padding */ if (RAND_bytes(p, padding) <= 0) { SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR); goto err; } ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding); if (ret >= 0) { if (s->msg_callback) s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding, s, s->msg_callback_arg); s->tlsext_hb_pending = 1; } err: OPENSSL_free(buf); return ret; } # endif # define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2) typedef struct { size_t sigalgcnt; int sigalgs[MAX_SIGALGLEN]; } sig_cb_st; static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; char etmp[20], *p; int sig_alg, hash_alg; if (elem == NULL) return 0; if (sarg->sigalgcnt == MAX_SIGALGLEN) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); if (!p) return 0; *p = 0; p++; if (!*p) return 0; if (!strcmp(etmp, "RSA")) sig_alg = EVP_PKEY_RSA; else if (!strcmp(etmp, "DSA")) sig_alg = EVP_PKEY_DSA; else if (!strcmp(etmp, "ECDSA")) sig_alg = EVP_PKEY_EC; else return 0; hash_alg = OBJ_sn2nid(p); if (hash_alg == NID_undef) hash_alg = OBJ_ln2nid(p); if (hash_alg == NID_undef) return 0; for (i = 0; i < sarg->sigalgcnt; i += 2) { if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) return 0; } sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; return 1; } /* * Set suppored signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { unsigned char *sigalgs, *sptr; int rhash, rsign; size_t i; if (salglen & 1) return 0; sigalgs = OPENSSL_malloc(salglen); if (sigalgs == NULL) return 0; for (i = 0, sptr = sigalgs; i < salglen; i += 2) { rhash = tls12_find_id(*psig_nids++, tls12_md, sizeof(tls12_md) / sizeof(tls12_lookup)); rsign = tls12_find_id(*psig_nids++, tls12_sig, sizeof(tls12_sig) / sizeof(tls12_lookup)); if (rhash == -1 || rsign == -1) goto err; *sptr++ = rhash; *sptr++ = rsign; } if (client) { if (c->client_sigalgs) OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen; } else { if (c->conf_sigalgs) OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) { int sig_nid; size_t i; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; for (i = 0; i < c->shared_sigalgslen; i++) if (sig_nid == c->shared_sigalgs[i].signandhash_nid) return 1; return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* * Check certificate chain is consistent with TLS extensions and is usable by * server. This servers two purposes: it allows users to check chains before * passing them to the server and it allows the server to check chains before * attempting to use them. */ /* Flags which need to be set for a certificate when stict mode not set */ # define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ # define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = cpk - c->pkeys; } else cpk = c->pkeys + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL /* Allow any certificate to pass test */ if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) { rv = CERT_PKEY_STRICT_FLAGS | CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_VALID | CERT_PKEY_SIGN; cpk->valid_flags = rv; return rv; } # endif } else { if (!x || !pk) return 0; idx = ssl_cert_type(x, pk); if (idx == -1) return 0; cpk = c->pkeys + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok == X509_V_OK) rv |= CERT_PKEY_SUITEB; else if (!check_flags) goto end; } /* * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; unsigned char rsign = 0; if (c->peer_sigalgs) default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ else { switch (idx) { case SSL_PKEY_RSA_ENC: case SSL_PKEY_RSA_SIGN: case SSL_PKEY_DH_RSA: rsign = TLSEXT_signature_rsa; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: case SSL_PKEY_DH_DSA: rsign = TLSEXT_signature_dsa; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = TLSEXT_signature_ecdsa; default_nid = NID_ecdsa_with_SHA1; break; default: default_nid = -1; break; } } /* * If peer sent no signature algorithms extension and we have set * preferred signature algorithms check we support sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const unsigned char *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) { if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (!tls1_check_sig_alg(c, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if (check_flags) rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, check_flags ? 1 : 2)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; int check_type = 0; switch (pk->type) { case EVP_PKEY_RSA: check_type = TLS_CT_RSA_SIGN; break; case EVP_PKEY_DSA: check_type = TLS_CT_DSS_SIGN; break; case EVP_PKEY_EC: check_type = TLS_CT_ECDSA_SIGN; break; case EVP_PKEY_DH: case EVP_PKEY_DHX: { int cert_type = X509_certificate_type(x, pk); if (cert_type & EVP_PKS_RSA) check_type = TLS_CT_RSA_FIXED_DH; if (cert_type & EVP_PKS_DSA) check_type = TLS_CT_DSS_FIXED_DH; } } if (check_type) { const unsigned char *ctypes; int ctypelen; if (c->ctypes) { ctypes = c->ctypes; ctypelen = (int)c->ctype_num; } else { ctypes = (unsigned char *)s->s3->tmp.ctype; ctypelen = s->s3->tmp.ctype_num; } for (i = 0; i < ctypelen; i++) { if (ctypes[i] == check_type) { rv |= CERT_PKEY_CERT_TYPE; break; } } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else rv |= CERT_PKEY_CERT_TYPE; ca_dn = s->s3->tmp.ca_names; if (!sk_X509_NAME_num(ca_dn)) rv |= CERT_PKEY_ISSUER_NAME; if (!(rv & CERT_PKEY_ISSUER_NAME)) { if (ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; } if (!(rv & CERT_PKEY_ISSUER_NAME)) { for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } } if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) { if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN) rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; else if (cpk->digest) rv |= CERT_PKEY_SIGN; } else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; /* * When checking a CERT_PKEY structure all flags are irrelevant if the * chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) cpk->valid_flags = rv; else { /* Preserve explicit sign flag, clear rest */ cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { /* Deliberately ignore all return values */ if(tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC) || tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN) || tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN) || tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA) || tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA) || tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC)); } /* User level utiity function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } #endif #ifndef OPENSSL_NO_DH DH *ssl_get_auto_dh(SSL *s) { int dh_secbits = 80; if (s->cert->dh_tmp_auto == 2) return DH_get_1024_160(); if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) { if (s->s3->tmp.new_cipher->strength_bits == 256) dh_secbits = 128; else dh_secbits = 80; } else { CERT_PKEY *cpk = ssl_get_server_send_pkey(s); dh_secbits = EVP_PKEY_security_bits(cpk->privatekey); } if (dh_secbits >= 128) { DH *dhp = DH_new(); if (!dhp) return NULL; dhp->g = BN_new(); if (dhp->g) BN_set_word(dhp->g, 2); if (dh_secbits >= 192) dhp->p = get_rfc3526_prime_8192(NULL); else dhp->p = get_rfc3526_prime_3072(NULL); if (!dhp->p || !dhp->g) { DH_free(dhp); return NULL; } return dhp; } if (dh_secbits >= 112) return DH_get_2048_224(); return DH_get_1024_160(); } #endif static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) { int secbits; EVP_PKEY *pkey = X509_get_pubkey(x); if (pkey) { secbits = EVP_PKEY_security_bits(pkey); EVP_PKEY_free(pkey); } else secbits = -1; if (s) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) { /* Lookup signature algorithm digest */ int secbits = -1, md_nid = NID_undef, sig_nid; sig_nid = X509_get_signature_nid(x); if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) { const EVP_MD *md; if (md_nid && (md = EVP_get_digestbynid(md_nid))) secbits = EVP_MD_size(md) * 4; } if (s) return ssl_security(s, op, secbits, md_nid, x); else return ssl_ctx_security(ctx, op, secbits, md_nid, x); } int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; if (is_ee) { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) return SSL_R_EE_KEY_TOO_SMALL; } else { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) return SSL_R_CA_KEY_TOO_SMALL; } if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) return SSL_R_CA_MD_TOO_WEAK; return 1; } /* * Check security of a chain, if sk includes the end entity certificate then * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending * one to the peer. Return values: 1 if ok otherwise error code to use */ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) { int rv, start_idx, i; if (x == NULL) { x = sk_X509_value(sk, 0); start_idx = 1; } else start_idx = 0; rv = ssl_security_cert(s, NULL, x, vfy, 1); if (rv != 1) return rv; for (i = start_idx; i < sk_X509_num(sk); i++) { x = sk_X509_value(sk, i); rv = ssl_security_cert(s, NULL, x, vfy, 0); if (rv != 1) return rv; } return 1; }