/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef __DECAF_POINT_448_H__ # define __DECAF_POINT_448_H__ 1 # include "curve448utils.h" # include "field.h" #ifdef __cplusplus extern "C" { #endif /** @cond internal */ # define DECAF_448_SCALAR_LIMBS ((446-1)/DECAF_WORD_BITS+1) /** @endcond */ /** The number of bits in a scalar */ # define DECAF_448_SCALAR_BITS 446 /** Number of bytes in a serialized point. */ # define DECAF_448_SER_BYTES 56 /** Number of bytes in an elligated point. For now set the same as SER_BYTES * but could be different for other curves. */ # define DECAF_448_HASH_BYTES 56 /** Number of bytes in a serialized scalar. */ # define DECAF_448_SCALAR_BYTES 56 /** Number of bits in the "which" field of an elligator inverse */ # define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3 /** The cofactor the curve would have, if we hadn't removed it */ # define DECAF_448_REMOVED_COFACTOR 4 /** X448 encoding ratio. */ # define DECAF_X448_ENCODE_RATIO 2 /** Number of bytes in an x448 public key */ # define DECAF_X448_PUBLIC_BYTES 56 /** Number of bytes in an x448 private key */ # define DECAF_X448_PRIVATE_BYTES 56 /** Twisted Edwards extended homogeneous coordinates */ typedef struct curve448_point_s { /** @cond internal */ gf_448_t x, y, z, t; /** @endcond */ } curve448_point_t[1]; /** Precomputed table based on a point. Can be trivial implementation. */ struct curve448_precomputed_s; /** Precomputed table based on a point. Can be trivial implementation. */ typedef struct curve448_precomputed_s curve448_precomputed_s; /** Scalar is stored packed, because we don't need the speed. */ typedef struct curve448_scalar_s { /** @cond internal */ decaf_word_t limb[DECAF_448_SCALAR_LIMBS]; /** @endcond */ } curve448_scalar_t[1]; /** A scalar equal to 1. */ extern const curve448_scalar_t curve448_scalar_one; /** A scalar equal to 0. */ extern const curve448_scalar_t curve448_scalar_zero; /** The identity point on the curve. */ extern const curve448_point_t curve448_point_identity; /** An arbitrarily chosen base point on the curve. */ extern const curve448_point_t curve448_point_base; /** Precomputed table for the base point on the curve. */ extern const struct curve448_precomputed_s *curve448_precomputed_base; /** * @brief Read a scalar from wire format or from bytes. * * @param [in] ser Serialized form of a scalar. * @param [out] out Deserialized form. * * @retval DECAF_SUCCESS The scalar was correctly encoded. * @retval DECAF_FAILURE The scalar was greater than the modulus, * and has been reduced modulo that modulus. */ __owur decaf_error_t curve448_scalar_decode(curve448_scalar_t out, const unsigned char ser[DECAF_448_SCALAR_BYTES] ); /** * @brief Read a scalar from wire format or from bytes. Reduces mod * scalar prime. * * @param [in] ser Serialized form of a scalar. * @param [in] ser_len Length of serialized form. * @param [out] out Deserialized form. */ void curve448_scalar_decode_long(curve448_scalar_t out, const unsigned char *ser, size_t ser_len); /** * @brief Serialize a scalar to wire format. * * @param [out] ser Serialized form of a scalar. * @param [in] s Deserialized scalar. */ void curve448_scalar_encode(unsigned char ser[DECAF_448_SCALAR_BYTES], const curve448_scalar_t s); /** * @brief Add two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a+b. */ void curve448_scalar_add(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /** * @brief Subtract two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a-b. */ void curve448_scalar_sub(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /** * @brief Multiply two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a*b. */ void curve448_scalar_mul(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /** * @brief Halve a scalar. The scalars may use the same memory. * @param [in] a A scalar. * @param [out] out a/2. */ void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a); /** * @brief Copy a scalar. The scalars may use the same memory, in which * case this function does nothing. * @param [in] a A scalar. * @param [out] out Will become a copy of a. */ static ossl_inline void curve448_scalar_copy(curve448_scalar_t out, const curve448_scalar_t a) { *out = *a; } /** * @brief Copy a point. The input and output may alias, * in which case this function does nothing. * * @param [out] a A copy of the point. * @param [in] b Any point. */ static ossl_inline void curve448_point_copy(curve448_point_t a, const curve448_point_t b) { *a = *b; } /** * @brief Test whether two points are equal. If yes, return * DECAF_TRUE, else return DECAF_FALSE. * * @param [in] a A point. * @param [in] b Another point. * @retval DECAF_TRUE The points are equal. * @retval DECAF_FALSE The points are not equal. */ __owur decaf_bool_t curve448_point_eq(const curve448_point_t a, const curve448_point_t b); /** * @brief Double a point. Equivalent to * curve448_point_add(two_a,a,a), but potentially faster. * * @param [out] two_a The sum a+a. * @param [in] a A point. */ void curve448_point_double(curve448_point_t two_a, const curve448_point_t a); /** * @brief RFC 7748 Diffie-Hellman scalarmul. This function uses a different * (non-Decaf) encoding. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. * * @retval DECAF_SUCCESS The scalarmul succeeded. * @retval DECAF_FAILURE The scalarmul didn't succeed, because the base * point is in a small subgroup. */ __owur decaf_error_t decaf_x448(uint8_t out[DECAF_X448_PUBLIC_BYTES], const uint8_t base[DECAF_X448_PUBLIC_BYTES], const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] ); /** * @brief Multiply a point by DECAF_X448_ENCODE_RATIO, * then encode it like RFC 7748. * * This function is mainly used internally, but is exported in case * it will be useful. * * The ratio is necessary because the internal representation doesn't * track the cofactor information, so on output we must clear the cofactor. * This would multiply by the cofactor, but in fact internally libdecaf's * points are always even, so it multiplies by half the cofactor instead. * * As it happens, this aligns with the base point definitions; that is, * if you pass the Decaf/Ristretto base point to this function, the result * will be DECAF_X448_ENCODE_RATIO times the X448 * base point. * * @param [out] out The scaled and encoded point. * @param [in] p The point to be scaled and encoded. */ void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t out [DECAF_X448_PUBLIC_BYTES], const curve448_point_t p); /** The base point for X448 Diffie-Hellman */ extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES]; /** * @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses * a different (non-Decaf) encoding. * * Does exactly the same thing as decaf_x448_generate_key, * but has a better name. * * @param [out] scaled The scaled point base*scalar * @param [in] scalar The scalar to multiply by. */ void decaf_x448_derive_public_key(uint8_t out[DECAF_X448_PUBLIC_BYTES], const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] ); /** * @brief Multiply a precomputed base point by a scalar: * scaled = scalar*base. * Some implementations do not include precomputed points; for * those implementations, this function is the same as * curve448_point_scalarmul * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. */ void curve448_precomputed_scalarmul(curve448_point_t scaled, const curve448_precomputed_s * base, const curve448_scalar_t scalar); /** * @brief Multiply two base points by two scalars: * scaled = scalar1*curve448_point_base + scalar2*base2. * * Otherwise equivalent to curve448_point_double_scalarmul, but may be * faster at the expense of being variable time. * * @param [out] combo The linear combination scalar1*base + scalar2*base2. * @param [in] scalar1 A first scalar to multiply by. * @param [in] base2 A second point to be scaled. * @param [in] scalar2 A second scalar to multiply by. * * @warning: This function takes variable time, and may leak the scalars * used. It is designed for signature verification. */ void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, const curve448_scalar_t scalar1, const curve448_point_t base2, const curve448_scalar_t scalar2); /** * @brief Test that a point is valid, for debugging purposes. * * @param [in] to_test The point to test. * @retval DECAF_TRUE The point is valid. * @retval DECAF_FALSE The point is invalid. */ __owur decaf_bool_t curve448_point_valid(const curve448_point_t to_test); /** * @brief Overwrite scalar with zeros. */ void curve448_scalar_destroy(curve448_scalar_t scalar); /** * @brief Overwrite point with zeros. */ void curve448_point_destroy(curve448_point_t point); #ifdef __cplusplus } /* extern "C" */ #endif #endif /* __DECAF_POINT_448_H__ */