/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/evp_int.h" #include "evp_locl.h" size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r); void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); #define KECCAK1600_WIDTH 1600 typedef struct { uint64_t A[5][5]; size_t block_size; /* cached ctx->digest->block_size */ size_t md_size; /* output length, variable in XOF */ size_t num; /* used bytes in below buffer */ unsigned char buf[KECCAK1600_WIDTH / 8 - 32]; unsigned char pad; } KECCAK1600_CTX; static int init(EVP_MD_CTX *evp_ctx, unsigned char pad) { KECCAK1600_CTX *ctx = evp_ctx->md_data; size_t bsz = evp_ctx->digest->block_size; if (bsz <= sizeof(ctx->buf)) { memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; ctx->pad = pad; return 1; } return 0; } static int sha3_init(EVP_MD_CTX *evp_ctx) { return init(evp_ctx, '\x06'); } static int shake_init(EVP_MD_CTX *evp_ctx) { return init(evp_ctx, '\x1f'); } static int kmac_init(EVP_MD_CTX *evp_ctx) { return init(evp_ctx, '\x04'); } static int sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const unsigned char *inp = _inp; size_t bsz = ctx->block_size; size_t num, rem; if (len == 0) return 1; if ((num = ctx->num) != 0) { /* process intermediate buffer? */ rem = bsz - num; if (len < rem) { memcpy(ctx->buf + num, inp, len); ctx->num += len; return 1; } /* * We have enough data to fill or overflow the intermediate * buffer. So we append |rem| bytes and process the block, * leaving the rest for later processing... */ memcpy(ctx->buf + num, inp, rem); inp += rem, len -= rem; (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz); ctx->num = 0; /* ctx->buf is processed, ctx->num is guaranteed to be zero */ } if (len >= bsz) rem = SHA3_absorb(ctx->A, inp, len, bsz); else rem = len; if (rem) { memcpy(ctx->buf, inp + len - rem, rem); ctx->num = rem; } return 1; } static int sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; size_t bsz = ctx->block_size; size_t num = ctx->num; /* * Pad the data with 10*1. Note that |num| can be |bsz - 1| * in which case both byte operations below are performed on * same byte... */ memset(ctx->buf + num, 0, bsz - num); ctx->buf[num] = ctx->pad; ctx->buf[bsz - 1] |= 0x80; (void)SHA3_absorb(ctx->A, ctx->buf, bsz, bsz); SHA3_squeeze(ctx->A, md, ctx->md_size, bsz); return 1; } static int shake_ctrl(EVP_MD_CTX *evp_ctx, int cmd, int p1, void *p2) { KECCAK1600_CTX *ctx = evp_ctx->md_data; switch (cmd) { case EVP_MD_CTRL_XOF_LEN: ctx->md_size = p1; return 1; default: return 0; } } #if defined(OPENSSL_CPUID_OBJ) && defined(__s390__) && defined(KECCAK1600_ASM) /* * IBM S390X support */ # include "s390x_arch.h" # define S390X_SHA3_FC(ctx) ((ctx)->pad) # define S390X_sha3_224_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_224)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_224))) # define S390X_sha3_256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_256)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_256))) # define S390X_sha3_384_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_384)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_384))) # define S390X_sha3_512_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHA3_512)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHA3_512))) # define S390X_shake128_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHAKE_128)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHAKE_128))) # define S390X_shake256_CAPABLE ((OPENSSL_s390xcap_P.kimd[0] & \ S390X_CAPBIT(S390X_SHAKE_256)) && \ (OPENSSL_s390xcap_P.klmd[0] & \ S390X_CAPBIT(S390X_SHAKE_256))) /* Convert md-size to block-size. */ # define S390X_KECCAK1600_BSZ(n) ((KECCAK1600_WIDTH - ((n) << 1)) >> 3) static int s390x_sha3_init(EVP_MD_CTX *evp_ctx) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const size_t bsz = evp_ctx->digest->block_size; /*- * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD * function code. */ switch (bsz) { case S390X_KECCAK1600_BSZ(224): ctx->pad = S390X_SHA3_224; break; case S390X_KECCAK1600_BSZ(256): ctx->pad = S390X_SHA3_256; break; case S390X_KECCAK1600_BSZ(384): ctx->pad = S390X_SHA3_384; break; case S390X_KECCAK1600_BSZ(512): ctx->pad = S390X_SHA3_512; break; default: return 0; } memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; return 1; } static int s390x_shake_init(EVP_MD_CTX *evp_ctx) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const size_t bsz = evp_ctx->digest->block_size; /*- * KECCAK1600_CTX structure's pad field is used to store the KIMD/KLMD * function code. */ switch (bsz) { case S390X_KECCAK1600_BSZ(128): ctx->pad = S390X_SHAKE_128; break; case S390X_KECCAK1600_BSZ(256): ctx->pad = S390X_SHAKE_256; break; default: return 0; } memset(ctx->A, 0, sizeof(ctx->A)); ctx->num = 0; ctx->block_size = bsz; ctx->md_size = evp_ctx->digest->md_size; return 1; } static int s390x_sha3_update(EVP_MD_CTX *evp_ctx, const void *_inp, size_t len) { KECCAK1600_CTX *ctx = evp_ctx->md_data; const unsigned char *inp = _inp; const size_t bsz = ctx->block_size; size_t num, rem; if (len == 0) return 1; if ((num = ctx->num) != 0) { rem = bsz - num; if (len < rem) { memcpy(ctx->buf + num, inp, len); ctx->num += len; return 1; } memcpy(ctx->buf + num, inp, rem); inp += rem; len -= rem; s390x_kimd(ctx->buf, bsz, ctx->pad, ctx->A); ctx->num = 0; } rem = len % bsz; s390x_kimd(inp, len - rem, ctx->pad, ctx->A); if (rem) { memcpy(ctx->buf, inp + len - rem, rem); ctx->num = rem; } return 1; } static int s390x_sha3_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; s390x_klmd(ctx->buf, ctx->num, NULL, 0, ctx->pad, ctx->A); memcpy(md, ctx->A, ctx->md_size); return 1; } static int s390x_shake_final(EVP_MD_CTX *evp_ctx, unsigned char *md) { KECCAK1600_CTX *ctx = evp_ctx->md_data; s390x_klmd(ctx->buf, ctx->num, md, ctx->md_size, ctx->pad, ctx->A); return 1; } # define EVP_MD_SHA3(bitlen) \ const EVP_MD *EVP_sha3_##bitlen(void) \ { \ static const EVP_MD s390x_sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ s390x_sha3_init, \ s390x_sha3_update, \ s390x_sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ static const EVP_MD sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ sha3_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ return S390X_sha3_##bitlen##_CAPABLE ? \ &s390x_sha3_##bitlen##_md : \ &sha3_##bitlen##_md; \ } # define EVP_MD_SHAKE(bitlen) \ const EVP_MD *EVP_shake##bitlen(void) \ { \ static const EVP_MD s390x_shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ s390x_shake_init, \ s390x_sha3_update, \ s390x_shake_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ static const EVP_MD shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ shake_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ return S390X_shake##bitlen##_CAPABLE ? \ &s390x_shake##bitlen##_md : \ &shake##bitlen##_md; \ } #else # define EVP_MD_SHA3(bitlen) \ const EVP_MD *EVP_sha3_##bitlen(void) \ { \ static const EVP_MD sha3_##bitlen##_md = { \ NID_sha3_##bitlen, \ NID_RSA_SHA3_##bitlen, \ bitlen / 8, \ EVP_MD_FLAG_DIGALGID_ABSENT, \ sha3_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ }; \ return &sha3_##bitlen##_md; \ } # define EVP_MD_SHAKE(bitlen) \ const EVP_MD *EVP_shake##bitlen(void) \ { \ static const EVP_MD shake##bitlen##_md = { \ NID_shake##bitlen, \ 0, \ bitlen / 8, \ EVP_MD_FLAG_XOF, \ shake_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ return &shake##bitlen##_md; \ } #endif EVP_MD_SHA3(224) EVP_MD_SHA3(256) EVP_MD_SHA3(384) EVP_MD_SHA3(512) EVP_MD_SHAKE(128) EVP_MD_SHAKE(256) # define EVP_MD_KECCAK_KMAC(bitlen) \ const EVP_MD *evp_keccak_kmac##bitlen(void) \ { \ static const EVP_MD kmac_##bitlen##_md = { \ -1, \ 0, \ 2 * bitlen / 8, \ EVP_MD_FLAG_XOF, \ kmac_init, \ sha3_update, \ sha3_final, \ NULL, \ NULL, \ (KECCAK1600_WIDTH - bitlen * 2) / 8, \ sizeof(KECCAK1600_CTX), \ shake_ctrl \ }; \ return &kmac_##bitlen##_md; \ } EVP_MD_KECCAK_KMAC(128) EVP_MD_KECCAK_KMAC(256)