/* * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stddef.h> #include <stdio.h> #include <string.h> #include <openssl/evp.h> #include <openssl/err.h> #include "internal/numbers.h" #ifndef OPENSSL_NO_SCRYPT #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) static void salsa208_word_specification(uint32_t inout[16]) { int i; uint32_t x[16]; memcpy(x, inout, sizeof(x)); for (i = 8; i > 0; i -= 2) { x[4] ^= R(x[0] + x[12], 7); x[8] ^= R(x[4] + x[0], 9); x[12] ^= R(x[8] + x[4], 13); x[0] ^= R(x[12] + x[8], 18); x[9] ^= R(x[5] + x[1], 7); x[13] ^= R(x[9] + x[5], 9); x[1] ^= R(x[13] + x[9], 13); x[5] ^= R(x[1] + x[13], 18); x[14] ^= R(x[10] + x[6], 7); x[2] ^= R(x[14] + x[10], 9); x[6] ^= R(x[2] + x[14], 13); x[10] ^= R(x[6] + x[2], 18); x[3] ^= R(x[15] + x[11], 7); x[7] ^= R(x[3] + x[15], 9); x[11] ^= R(x[7] + x[3], 13); x[15] ^= R(x[11] + x[7], 18); x[1] ^= R(x[0] + x[3], 7); x[2] ^= R(x[1] + x[0], 9); x[3] ^= R(x[2] + x[1], 13); x[0] ^= R(x[3] + x[2], 18); x[6] ^= R(x[5] + x[4], 7); x[7] ^= R(x[6] + x[5], 9); x[4] ^= R(x[7] + x[6], 13); x[5] ^= R(x[4] + x[7], 18); x[11] ^= R(x[10] + x[9], 7); x[8] ^= R(x[11] + x[10], 9); x[9] ^= R(x[8] + x[11], 13); x[10] ^= R(x[9] + x[8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); } for (i = 0; i < 16; ++i) inout[i] += x[i]; OPENSSL_cleanse(x, sizeof(x)); } static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) { uint64_t i, j; uint32_t X[16], *pB; memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); pB = B; for (i = 0; i < r * 2; i++) { for (j = 0; j < 16; j++) X[j] ^= *pB++; salsa208_word_specification(X); memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); } OPENSSL_cleanse(X, sizeof(X)); } static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, uint32_t *X, uint32_t *T, uint32_t *V) { unsigned char *pB; uint32_t *pV; uint64_t i, k; /* Convert from little endian input */ for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { *pV = *pB++; *pV |= *pB++ << 8; *pV |= *pB++ << 16; *pV |= (uint32_t)*pB++ << 24; } for (i = 1; i < N; i++, pV += 32 * r) scryptBlockMix(pV, pV - 32 * r, r); scryptBlockMix(X, V + (N - 1) * 32 * r, r); for (i = 0; i < N; i++) { uint32_t j; j = X[16 * (2 * r - 1)] % N; pV = V + 32 * r * j; for (k = 0; k < 32 * r; k++) T[k] = X[k] ^ *pV++; scryptBlockMix(X, T, r); } /* Convert output to little endian */ for (i = 0, pB = B; i < 32 * r; i++) { uint32_t xtmp = X[i]; *pB++ = xtmp & 0xff; *pB++ = (xtmp >> 8) & 0xff; *pB++ = (xtmp >> 16) & 0xff; *pB++ = (xtmp >> 24) & 0xff; } } #ifndef SIZE_MAX # define SIZE_MAX ((size_t)-1) #endif /* * Maximum power of two that will fit in uint64_t: this should work on * most (all?) platforms. */ #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) /* * Maximum value of p * r: * p <= ((2^32-1) * hLen) / MFLen => * p <= ((2^32-1) * 32) / (128 * r) => * p * r <= (2^30-1) * */ #define SCRYPT_PR_MAX ((1 << 30) - 1) /* * Maximum permitted memory allow this to be overridden with Configuration * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. */ #ifdef SCRYPT_MAX_MEM # if SCRYPT_MAX_MEM == 0 # undef SCRYPT_MAX_MEM /* * Although we could theoretically allocate SIZE_MAX memory that would leave * no memory available for anything else so set limit as half that. */ # define SCRYPT_MAX_MEM (SIZE_MAX/2) # endif #else /* Default memory limit: 32 MB */ # define SCRYPT_MAX_MEM (1024 * 1024 * 32) #endif int EVP_PBE_scrypt(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen) { int rv = 0; unsigned char *B; uint32_t *X, *V, *T; uint64_t i, Blen, Vlen; /* Sanity check parameters */ /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) return 0; /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ if (p > SCRYPT_PR_MAX / r) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Need to check N: if 2^(128 * r / 8) overflows limit this is * automatically satisfied since N <= UINT64_MAX. */ if (16 * r <= LOG2_UINT64_MAX) { if (N >= (((uint64_t)1) << (16 * r))) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } } /* Memory checks: check total allocated buffer size fits in uint64_t */ /* * B size in section 5 step 1.S * Note: we know p * 128 * r < UINT64_MAX because we already checked * p * r < SCRYPT_PR_MAX */ Blen = p * 128 * r; /* * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] */ if (Blen > INT_MAX) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t * This is combined size V, X and T (section 4) */ i = UINT64_MAX / (32 * sizeof(uint32_t)); if (N + 2 > i / r) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } Vlen = 32 * r * (N + 2) * sizeof(uint32_t); /* check total allocated size fits in uint64_t */ if (Blen > UINT64_MAX - Vlen) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } if (maxmem == 0) maxmem = SCRYPT_MAX_MEM; /* Check that the maximum memory doesn't exceed a size_t limits */ if (maxmem > SIZE_MAX) maxmem = SIZE_MAX; if (Blen + Vlen > maxmem) { EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* If no key return to indicate parameters are OK */ if (key == NULL) return 1; B = OPENSSL_malloc((size_t)(Blen + Vlen)); if (B == NULL) { EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE); return 0; } X = (uint32_t *)(B + Blen); T = X + 32 * r; V = T + 32 * r; if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), (int)Blen, B) == 0) goto err; for (i = 0; i < p; i++) scryptROMix(B + 128 * r * i, r, N, X, T, V); if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), keylen, key) == 0) goto err; rv = 1; err: if (rv == 0) EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR); OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); return rv; } #endif