#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # SHA256 for C64x+. # # January 2012 # # Performance is just below 10 cycles per processed byte, which is # almost 40% faster than compiler-generated code. Unroll is unlikely # to give more than ~8% improvement... # # !!! Note that this module uses AMR, which means that all interrupt # service routines are expected to preserve it and for own well-being # zero it upon entry. while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; ($CTXA,$INP,$NUM) = ("A4","B4","A6"); # arguments $K256="A3"; ($A,$Actx,$B,$Bctx,$C,$Cctx,$D,$Dctx,$T2,$S0,$s1,$t0a,$t1a,$t2a,$X9,$X14) =map("A$_",(16..31)); ($E,$Ectx,$F,$Fctx,$G,$Gctx,$H,$Hctx,$T1,$S1,$s0,$t0e,$t1e,$t2e,$X1,$X15) =map("B$_",(16..31)); ($Xia,$Xib)=("A5","B5"); # circular/ring buffer $CTXB=$t2e; ($Xn,$X0,$K)=("B7","B8","B9"); ($Maj,$Ch)=($T2,"B6"); $code.=<<___; .text .if __TI_EABI__ .nocmp .asg sha256_block_data_order,_sha256_block_data_order .endif .asg B3,RA .asg A15,FP .asg B15,SP .if .BIG_ENDIAN .asg SWAP2,MV .asg SWAP4,MV .endif .global _sha256_block_data_order _sha256_block_data_order: .asmfunc stack_usage(64) MV $NUM,A0 ; reassign $NUM || MVK -64,B0 [!A0] BNOP RA ; if ($NUM==0) return; || [A0] STW FP,*SP--[16] ; save frame pointer and alloca(64) || [A0] MV SP,FP [A0] ADDKPC _sha256_block_data_order,B2 || [A0] AND B0,SP,SP ; align stack at 64 bytes .if __TI_EABI__ [A0] MVK 0x00404,B1 || [A0] MVKL \$PCR_OFFSET(K256,_sha256_block_data_order),$K256 [A0] MVKH 0x50000,B1 || [A0] MVKH \$PCR_OFFSET(K256,_sha256_block_data_order),$K256 .else [A0] MVK 0x00404,B1 || [A0] MVKL (K256-_sha256_block_data_order),$K256 [A0] MVKH 0x50000,B1 || [A0] MVKH (K256-_sha256_block_data_order),$K256 .endif [A0] MVC B1,AMR ; setup circular addressing || [A0] MV SP,$Xia [A0] MV SP,$Xib || [A0] ADD B2,$K256,$K256 || [A0] MV $CTXA,$CTXB || [A0] SUBAW SP,2,SP ; reserve two words above buffer LDW *${CTXA}[0],$A ; load ctx || LDW *${CTXB}[4],$E LDW *${CTXA}[1],$B || LDW *${CTXB}[5],$F LDW *${CTXA}[2],$C || LDW *${CTXB}[6],$G LDW *${CTXA}[3],$D || LDW *${CTXB}[7],$H LDNW *$INP++,$Xn ; pre-fetch input LDW *$K256++,$K ; pre-fetch K256[0] MVK 14,B0 ; loop counters MVK 47,B1 || ADDAW $Xia,9,$Xia outerloop?: SUB A0,1,A0 || MV $A,$Actx || MV $E,$Ectx || MVD $B,$Bctx || MVD $F,$Fctx MV $C,$Cctx || MV $G,$Gctx || MVD $D,$Dctx || MVD $H,$Hctx || SWAP4 $Xn,$X0 SPLOOPD 8 ; BODY_00_14 || MVC B0,ILC || SWAP2 $X0,$X0 LDNW *$INP++,$Xn || ROTL $A,30,$S0 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $K,$H,$T1 ; T1 = h + K256[i] ADD $X0,$T1,$T1 ; T1 += X[i]; || STW $X0,*$Xib++ || XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || LDW *$K256++,$K ; pre-fetch K256[i+1] || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || ROTL $G,0,$H ; h = g || MV $F,$G ; g = f || MV $X0,$X14 || SWAP4 $Xn,$X0 SWAP2 $X0,$X0 || MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c MV $B,$C ; c = b || MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 SPKERNEL ROTL $A,30,$S0 ; BODY_15 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e || LDW *${Xib}[1],$Xn ; modulo-scheduled ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) || LDW *${Xib}[2],$X1 ; modulo-scheduled ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $K,$H,$T1 ; T1 = h + K256[i] ADD $X0,$T1,$T1 ; T1 += X[i]; || STW $X0,*$Xib++ || XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || LDW *$K256++,$K ; pre-fetch K256[i+1] || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || ROTL $G,0,$H ; h = g || MV $F,$G ; g = f || MV $X0,$X15 MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c || MV $Xn,$X0 ; modulo-scheduled || LDW *$Xia,$X9 ; modulo-scheduled || ROTL $X1,25,$t0e ; modulo-scheduled || ROTL $X14,15,$t0a ; modulo-scheduled SHRU $X1,3,$s0 ; modulo-scheduled || SHRU $X14,10,$s1 ; modulo-scheduled || ROTL $B,0,$C ; c = b || MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 SPLOOPD 10 ; BODY_16_63 || MVC B1,ILC || ROTL $X1,14,$t1e ; modulo-scheduled || ROTL $X14,13,$t1a ; modulo-scheduled XOR $t0e,$s0,$s0 || XOR $t0a,$s1,$s1 || MV $X15,$X14 || MV $X1,$Xn XOR $t1e,$s0,$s0 ; sigma0(X[i+1]) || XOR $t1a,$s1,$s1 ; sigma1(X[i+14]) || LDW *${Xib}[2],$X1 ; module-scheduled ROTL $A,30,$S0 || OR $A,$B,$Maj || AND $A,$B,$t2a || ROTL $E,26,$S1 || AND $F,$E,$Ch || ANDN $G,$E,$t2e || ADD $X9,$X0,$X0 ; X[i] += X[i+9] ROTL $A,19,$t0a || AND $C,$Maj,$Maj || ROTL $E,21,$t0e || XOR $t2e,$Ch,$Ch ; Ch(e,f,g) = (e&f)^(~e&g) || ADD $s0,$X0,$X0 ; X[i] += sigma1(X[i+1]) ROTL $A,10,$t1a || OR $t2a,$Maj,$Maj ; Maj(a,b,c) = ((a|b)&c)|(a&b) || ROTL $E,7,$t1e || ADD $H,$K,$T1 ; T1 = h + K256[i] || ADD $s1,$X0,$X0 ; X[i] += sigma1(X[i+14]) XOR $t0a,$S0,$S0 || XOR $t0e,$S1,$S1 || ADD $X0,$T1,$T1 ; T1 += X[i] || STW $X0,*$Xib++ XOR $t1a,$S0,$S0 ; Sigma0(a) || XOR $t1e,$S1,$S1 ; Sigma1(e) || ADD $Ch,$T1,$T1 ; T1 += Ch(e,f,g) || MV $X0,$X15 || ROTL $G,0,$H ; h = g || LDW *$K256++,$K ; pre-fetch K256[i+1] ADD $S1,$T1,$T1 ; T1 += Sigma1(e) || ADD $S0,$Maj,$T2 ; T2 = Sigma0(a) + Maj(a,b,c) || MV $F,$G ; g = f || MV $Xn,$X0 ; modulo-scheduled || LDW *++$Xia,$X9 ; modulo-scheduled || ROTL $X1,25,$t0e ; module-scheduled || ROTL $X14,15,$t0a ; modulo-scheduled ROTL $X1,14,$t1e ; modulo-scheduled || ROTL $X14,13,$t1a ; modulo-scheduled || MV $E,$F ; f = e || ADD $D,$T1,$E ; e = d + T1 || MV $C,$D ; d = c || MV $B,$C ; c = b MV $A,$B ; b = a || ADD $T1,$T2,$A ; a = T1 + T2 || SHRU $X1,3,$s0 ; modulo-scheduled || SHRU $X14,10,$s1 ; modulo-scheduled SPKERNEL [A0] B outerloop? || [A0] LDNW *$INP++,$Xn ; pre-fetch input || [A0] ADDK -260,$K256 ; rewind K256 || ADD $Actx,$A,$A ; accumulate ctx || ADD $Ectx,$E,$E || ADD $Bctx,$B,$B ADD $Fctx,$F,$F || ADD $Cctx,$C,$C || ADD $Gctx,$G,$G || ADD $Dctx,$D,$D || ADD $Hctx,$H,$H || [A0] LDW *$K256++,$K ; pre-fetch K256[0] [!A0] BNOP RA ||[!A0] MV $CTXA,$CTXB [!A0] MV FP,SP ; restore stack pointer ||[!A0] LDW *FP[0],FP ; restore frame pointer [!A0] STW $A,*${CTXA}[0] ; save ctx ||[!A0] STW $E,*${CTXB}[4] ||[!A0] MVK 0,B0 [!A0] STW $B,*${CTXA}[1] ||[!A0] STW $F,*${CTXB}[5] ||[!A0] MVC B0,AMR ; clear AMR STW $C,*${CTXA}[2] || STW $G,*${CTXB}[6] STW $D,*${CTXA}[3] || STW $H,*${CTXB}[7] .endasmfunc .if __TI_EABI__ .sect ".text:sha_asm.const" .else .sect ".const:sha_asm" .endif .align 128 K256: .uword 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5 .uword 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5 .uword 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3 .uword 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174 .uword 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc .uword 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da .uword 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7 .uword 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967 .uword 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13 .uword 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85 .uword 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3 .uword 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070 .uword 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5 .uword 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3 .uword 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208 .uword 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 .cstring "SHA256 block transform for C64x+, CRYPTOGAMS by " .align 4 ___ print $code; close STDOUT;