/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #ifndef HEADER_POINT_448_H # define HEADER_POINT_448_H # include "curve448utils.h" # include "field.h" /* Comb config: number of combs, n, t, s. */ #define COMBS_N 5 #define COMBS_T 5 #define COMBS_S 18 /* Projective Niels coordinates */ typedef struct { gf a, b, c; } niels_s, niels_t[1]; typedef struct { niels_t n; gf z; } VECTOR_ALIGNED pniels_t[1]; /* Precomputed base */ struct curve448_precomputed_s { niels_t table[COMBS_N << (COMBS_T - 1)]; }; # define C448_SCALAR_LIMBS ((446-1)/C448_WORD_BITS+1) /* The number of bits in a scalar */ # define C448_SCALAR_BITS 446 /* Number of bytes in a serialized scalar. */ # define C448_SCALAR_BYTES 56 /* X448 encoding ratio. */ # define X448_ENCODE_RATIO 2 /* Number of bytes in an x448 public key */ # define X448_PUBLIC_BYTES 56 /* Number of bytes in an x448 private key */ # define X448_PRIVATE_BYTES 56 /* Twisted Edwards extended homogeneous coordinates */ typedef struct curve448_point_s { gf x, y, z, t; } curve448_point_t[1]; /* Precomputed table based on a point. Can be trivial implementation. */ struct curve448_precomputed_s; /* Precomputed table based on a point. Can be trivial implementation. */ typedef struct curve448_precomputed_s curve448_precomputed_s; /* Scalar is stored packed, because we don't need the speed. */ typedef struct curve448_scalar_s { c448_word_t limb[C448_SCALAR_LIMBS]; } curve448_scalar_t[1]; /* A scalar equal to 1. */ extern const curve448_scalar_t curve448_scalar_one; /* A scalar equal to 0. */ extern const curve448_scalar_t curve448_scalar_zero; /* The identity point on the curve. */ extern const curve448_point_t curve448_point_identity; /* Precomputed table for the base point on the curve. */ extern const struct curve448_precomputed_s *curve448_precomputed_base; /* * Read a scalar from wire format or from bytes. * * ser (in): Serialized form of a scalar. * out (out): Deserialized form. * * Returns: * C448_SUCCESS: The scalar was correctly encoded. * C448_FAILURE: The scalar was greater than the modulus, and has been reduced * modulo that modulus. */ __owur c448_error_t curve448_scalar_decode( curve448_scalar_t out, const unsigned char ser[C448_SCALAR_BYTES]); /* * Read a scalar from wire format or from bytes. Reduces mod scalar prime. * * ser (in): Serialized form of a scalar. * ser_len (in): Length of serialized form. * out (out): Deserialized form. */ void curve448_scalar_decode_long(curve448_scalar_t out, const unsigned char *ser, size_t ser_len); /* * Serialize a scalar to wire format. * * ser (out): Serialized form of a scalar. * s (in): Deserialized scalar. */ void curve448_scalar_encode(unsigned char ser[C448_SCALAR_BYTES], const curve448_scalar_t s); /* * Add two scalars. |a|, |b| and |out| may alias each other. * * a (in): One scalar. * b (in): Another scalar. * out (out): a+b. */ void curve448_scalar_add(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Subtract two scalars. |a|, |b| and |out| may alias each other. * a (in): One scalar. * b (in): Another scalar. * out (out): a-b. */ void curve448_scalar_sub(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Multiply two scalars. |a|, |b| and |out| may alias each other. * * a (in): One scalar. * b (in): Another scalar. * out (out): a*b. */ void curve448_scalar_mul(curve448_scalar_t out, const curve448_scalar_t a, const curve448_scalar_t b); /* * Halve a scalar. |a| and |out| may alias each other. * * a (in): A scalar. * out (out): a/2. */ void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a); /* * Copy a scalar. The scalars may use the same memory, in which case this * function does nothing. * * a (in): A scalar. * out (out): Will become a copy of a. */ static ossl_inline void curve448_scalar_copy(curve448_scalar_t out, const curve448_scalar_t a) { *out = *a; } /* * Copy a point. The input and output may alias, in which case this function * does nothing. * * a (out): A copy of the point. * b (in): Any point. */ static ossl_inline void curve448_point_copy(curve448_point_t a, const curve448_point_t b) { *a = *b; } /* * Test whether two points are equal. If yes, return C448_TRUE, else return * C448_FALSE. * * a (in): A point. * b (in): Another point. * * Returns: * C448_TRUE: The points are equal. * C448_FALSE: The points are not equal. */ __owur c448_bool_t curve448_point_eq(const curve448_point_t a, const curve448_point_t b); /* * Double a point. Equivalent to curve448_point_add(two_a,a,a), but potentially * faster. * * two_a (out): The sum a+a. * a (in): A point. */ void curve448_point_double(curve448_point_t two_a, const curve448_point_t a); /* * RFC 7748 Diffie-Hellman scalarmul. This function uses a different * (non-Decaf) encoding. * * out (out): The scaled point base*scalar * base (in): The point to be scaled. * scalar (in): The scalar to multiply by. * * Returns: * C448_SUCCESS: The scalarmul succeeded. * C448_FAILURE: The scalarmul didn't succeed, because the base point is in a * small subgroup. */ __owur c448_error_t x448_int(uint8_t out[X448_PUBLIC_BYTES], const uint8_t base[X448_PUBLIC_BYTES], const uint8_t scalar[X448_PRIVATE_BYTES]); /* * Multiply a point by X448_ENCODE_RATIO, then encode it like RFC 7748. * * This function is mainly used internally, but is exported in case * it will be useful. * * The ratio is necessary because the internal representation doesn't * track the cofactor information, so on output we must clear the cofactor. * This would multiply by the cofactor, but in fact internally points are always * even, so it multiplies by half the cofactor instead. * * As it happens, this aligns with the base point definitions; that is, * if you pass the Decaf/Ristretto base point to this function, the result * will be X448_ENCODE_RATIO times the X448 * base point. * * out (out): The scaled and encoded point. * p (in): The point to be scaled and encoded. */ void curve448_point_mul_by_ratio_and_encode_like_x448( uint8_t out[X448_PUBLIC_BYTES], const curve448_point_t p); /* * RFC 7748 Diffie-Hellman base point scalarmul. This function uses a different * (non-Decaf) encoding. * * out (out): The scaled point base*scalar * scalar (in): The scalar to multiply by. */ void x448_derive_public_key(uint8_t out[X448_PUBLIC_BYTES], const uint8_t scalar[X448_PRIVATE_BYTES]); /* * Multiply a precomputed base point by a scalar: out = scalar*base. * * scaled (out): The scaled point base*scalar * base (in): The point to be scaled. * scalar (in): The scalar to multiply by. */ void curve448_precomputed_scalarmul(curve448_point_t scaled, const curve448_precomputed_s * base, const curve448_scalar_t scalar); /* * Multiply two base points by two scalars: * combo = scalar1*curve448_point_base + scalar2*base2. * * Otherwise equivalent to curve448_point_double_scalarmul, but may be * faster at the expense of being variable time. * * combo (out): The linear combination scalar1*base + scalar2*base2. * scalar1 (in): A first scalar to multiply by. * base2 (in): A second point to be scaled. * scalar2 (in) A second scalar to multiply by. * * Warning: This function takes variable time, and may leak the scalars used. * It is designed for signature verification. */ void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, const curve448_scalar_t scalar1, const curve448_point_t base2, const curve448_scalar_t scalar2); /* * Test that a point is valid, for debugging purposes. * * to_test (in): The point to test. * * Returns: * C448_TRUE The point is valid. * C448_FALSE The point is invalid. */ __owur c448_bool_t curve448_point_valid(const curve448_point_t to_test); /* Overwrite scalar with zeros. */ void curve448_scalar_destroy(curve448_scalar_t scalar); /* Overwrite point with zeros. */ void curve448_point_destroy(curve448_point_t point); #endif /* HEADER_POINT_448_H */