/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2015-2016 Cryptography Research, Inc. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * Originally written by Mike Hamburg */ #include #include #include #include "curve448_local.h" #include "word.h" #include "ed448.h" #include "internal/numbers.h" #define COFACTOR 4 static c448_error_t oneshot_hash(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen) { EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); if (hashctx == NULL) return C448_FAILURE; if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) || !EVP_DigestUpdate(hashctx, in, inlen) || !EVP_DigestFinalXOF(hashctx, out, outlen)) { EVP_MD_CTX_free(hashctx); return C448_FAILURE; } EVP_MD_CTX_free(hashctx); return C448_SUCCESS; } static void clamp(uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]) { secret_scalar_ser[0] &= -COFACTOR; secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] = 0; secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 2] |= 0x80; } static c448_error_t hash_init_with_dom(EVP_MD_CTX *hashctx, uint8_t prehashed, uint8_t for_prehash, const uint8_t *context, size_t context_len) { const char *dom_s = "SigEd448"; uint8_t dom[2]; if (context_len > UINT8_MAX) return C448_FAILURE; dom[0] = (uint8_t)(2 - (prehashed == 0 ? 1 : 0) - (for_prehash == 0 ? 1 : 0)); dom[1] = (uint8_t)context_len; if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) || !EVP_DigestUpdate(hashctx, dom_s, strlen(dom_s)) || !EVP_DigestUpdate(hashctx, dom, sizeof(dom)) || !EVP_DigestUpdate(hashctx, context, context_len)) return C448_FAILURE; return C448_SUCCESS; } /* In this file because it uses the hash */ c448_error_t c448_ed448_convert_private_key_to_x448( uint8_t x[X448_PRIVATE_BYTES], const uint8_t ed [EDDSA_448_PRIVATE_BYTES]) { /* pass the private key through oneshot_hash function */ /* and keep the first X448_PRIVATE_BYTES bytes */ return oneshot_hash(x, X448_PRIVATE_BYTES, ed, EDDSA_448_PRIVATE_BYTES); } c448_error_t c448_ed448_derive_public_key( uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES]) { /* only this much used for keygen */ uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]; curve448_scalar_t secret_scalar; unsigned int c; curve448_point_t p; if (!oneshot_hash(secret_scalar_ser, sizeof(secret_scalar_ser), privkey, EDDSA_448_PRIVATE_BYTES)) return C448_FAILURE; clamp(secret_scalar_ser); curve448_scalar_decode_long(secret_scalar, secret_scalar_ser, sizeof(secret_scalar_ser)); /* * Since we are going to mul_by_cofactor during encoding, divide by it * here. However, the EdDSA base point is not the same as the decaf base * point if the sigma isogeny is in use: the EdDSA base point is on * Etwist_d/(1-d) and the decaf base point is on Etwist_d, and when * converted it effectively picks up a factor of 2 from the isogenies. So * we might start at 2 instead of 1. */ for (c = 1; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) curve448_scalar_halve(secret_scalar, secret_scalar); curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar); curve448_point_mul_by_ratio_and_encode_like_eddsa(pubkey, p); /* Cleanup */ curve448_scalar_destroy(secret_scalar); curve448_point_destroy(p); OPENSSL_cleanse(secret_scalar_ser, sizeof(secret_scalar_ser)); return C448_SUCCESS; } c448_error_t c448_ed448_sign( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, size_t context_len) { curve448_scalar_t secret_scalar; EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); c448_error_t ret = C448_FAILURE; curve448_scalar_t nonce_scalar; uint8_t nonce_point[EDDSA_448_PUBLIC_BYTES] = { 0 }; unsigned int c; curve448_scalar_t challenge_scalar; if (hashctx == NULL) return C448_FAILURE; { /* * Schedule the secret key, First EDDSA_448_PRIVATE_BYTES is serialised * secret scalar,next EDDSA_448_PRIVATE_BYTES bytes is the seed. */ uint8_t expanded[EDDSA_448_PRIVATE_BYTES * 2]; if (!oneshot_hash(expanded, sizeof(expanded), privkey, EDDSA_448_PRIVATE_BYTES)) goto err; clamp(expanded); curve448_scalar_decode_long(secret_scalar, expanded, EDDSA_448_PRIVATE_BYTES); /* Hash to create the nonce */ if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, expanded + EDDSA_448_PRIVATE_BYTES, EDDSA_448_PRIVATE_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len)) { OPENSSL_cleanse(expanded, sizeof(expanded)); goto err; } OPENSSL_cleanse(expanded, sizeof(expanded)); } /* Decode the nonce */ { uint8_t nonce[2 * EDDSA_448_PRIVATE_BYTES]; if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce))) goto err; curve448_scalar_decode_long(nonce_scalar, nonce, sizeof(nonce)); OPENSSL_cleanse(nonce, sizeof(nonce)); } { /* Scalarmul to create the nonce-point */ curve448_scalar_t nonce_scalar_2; curve448_point_t p; curve448_scalar_halve(nonce_scalar_2, nonce_scalar); for (c = 2; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2); curve448_precomputed_scalarmul(p, curve448_precomputed_base, nonce_scalar_2); curve448_point_mul_by_ratio_and_encode_like_eddsa(nonce_point, p); curve448_point_destroy(p); curve448_scalar_destroy(nonce_scalar_2); } { uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; /* Compute the challenge */ if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point)) || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len) || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) goto err; curve448_scalar_decode_long(challenge_scalar, challenge, sizeof(challenge)); OPENSSL_cleanse(challenge, sizeof(challenge)); } curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar); curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar); OPENSSL_cleanse(signature, EDDSA_448_SIGNATURE_BYTES); memcpy(signature, nonce_point, sizeof(nonce_point)); curve448_scalar_encode(&signature[EDDSA_448_PUBLIC_BYTES], challenge_scalar); curve448_scalar_destroy(secret_scalar); curve448_scalar_destroy(nonce_scalar); curve448_scalar_destroy(challenge_scalar); ret = C448_SUCCESS; err: EVP_MD_CTX_free(hashctx); return ret; } c448_error_t c448_ed448_sign_prehash( uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, size_t context_len) { return c448_ed448_sign(signature, privkey, pubkey, hash, 64, 1, context, context_len); } c448_error_t c448_ed448_verify( const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t *message, size_t message_len, uint8_t prehashed, const uint8_t *context, uint8_t context_len) { curve448_point_t pk_point, r_point; c448_error_t error; curve448_scalar_t challenge_scalar; curve448_scalar_t response_scalar; /* Order in little endian format */ static const uint8_t order[] = { 0xF3, 0x44, 0x58, 0xAB, 0x92, 0xC2, 0x78, 0x23, 0x55, 0x8F, 0xC5, 0x8D, 0x72, 0xC2, 0x6C, 0x21, 0x90, 0x36, 0xD6, 0xAE, 0x49, 0xDB, 0x4E, 0xC4, 0xE9, 0x23, 0xCA, 0x7C, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00 }; int i; /* * Check that s (second 57 bytes of the sig) is less than the order. Both * s and the order are in little-endian format. This can be done in * variable time, since if this is not the case the signature if publicly * invalid. */ for (i = EDDSA_448_PUBLIC_BYTES - 1; i >= 0; i--) { if (signature[i + EDDSA_448_PUBLIC_BYTES] > order[i]) return C448_FAILURE; if (signature[i + EDDSA_448_PUBLIC_BYTES] < order[i]) break; } if (i < 0) return C448_FAILURE; error = curve448_point_decode_like_eddsa_and_mul_by_ratio(pk_point, pubkey); if (C448_SUCCESS != error) return error; error = curve448_point_decode_like_eddsa_and_mul_by_ratio(r_point, signature); if (C448_SUCCESS != error) return error; { /* Compute the challenge */ EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; if (hashctx == NULL || !hash_init_with_dom(hashctx, prehashed, 0, context, context_len) || !EVP_DigestUpdate(hashctx, signature, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) || !EVP_DigestUpdate(hashctx, message, message_len) || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) { EVP_MD_CTX_free(hashctx); return C448_FAILURE; } EVP_MD_CTX_free(hashctx); curve448_scalar_decode_long(challenge_scalar, challenge, sizeof(challenge)); OPENSSL_cleanse(challenge, sizeof(challenge)); } curve448_scalar_sub(challenge_scalar, curve448_scalar_zero, challenge_scalar); curve448_scalar_decode_long(response_scalar, &signature[EDDSA_448_PUBLIC_BYTES], EDDSA_448_PRIVATE_BYTES); /* pk_point = -c(x(P)) + (cx + k)G = kG */ curve448_base_double_scalarmul_non_secret(pk_point, response_scalar, pk_point, challenge_scalar); return c448_succeed_if(curve448_point_eq(pk_point, r_point)); } c448_error_t c448_ed448_verify_prehash( const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], const uint8_t hash[64], const uint8_t *context, uint8_t context_len) { return c448_ed448_verify(signature, pubkey, hash, 64, 1, context, context_len); } int ED448_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_sign(out_sig, private_key, public_key, message, message_len, 0, context, context_len) == C448_SUCCESS; } int ED448_verify(const uint8_t *message, size_t message_len, const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_verify(signature, public_key, message, message_len, 0, context, (uint8_t)context_len) == C448_SUCCESS; } int ED448ph_sign(uint8_t *out_sig, const uint8_t hash[64], const uint8_t public_key[57], const uint8_t private_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_sign_prehash(out_sig, private_key, public_key, hash, context, context_len) == C448_SUCCESS; } int ED448ph_verify(const uint8_t hash[64], const uint8_t signature[114], const uint8_t public_key[57], const uint8_t *context, size_t context_len) { return c448_ed448_verify_prehash(signature, public_key, hash, context, (uint8_t)context_len) == C448_SUCCESS; } int ED448_public_from_private(uint8_t out_public_key[57], const uint8_t private_key[57]) { return c448_ed448_derive_public_key(out_public_key, private_key) == C448_SUCCESS; }