/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" #include static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess); static int ssl_check_clienthello_tlsext_early(SSL *s); static int ssl_check_serverhello_tlsext(SSL *s); SSL3_ENC_METHOD const TLSv1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS1_FINISH_MAC_LENGTH, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, SSL3_HM_HEADER_LENGTH, ssl3_set_handshake_header, ssl3_handshake_write }; long tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return (0); s->method->ssl_clear(s); return (1); } void tls1_free(SSL *s) { OPENSSL_free(s->tlsext_session_ticket); ssl3_free(s); } void tls1_clear(SSL *s) { ssl3_clear(s); if (s->method->version == TLS_ANY_VERSION) s->version = TLS_MAX_VERSION; else s->version = s->method->version; } #ifndef OPENSSL_NO_EC typedef struct { int nid; /* Curve NID */ int secbits; /* Bits of security (from SP800-57) */ unsigned int flags; /* Flags: currently just field type */ } tls_curve_info; /* Mask for curve type */ # define TLS_CURVE_TYPE 0x3 # define TLS_CURVE_PRIME 0x0 # define TLS_CURVE_CHAR2 0x1 # define TLS_CURVE_CUSTOM 0x2 /* * Table of curve information. * Do not delete entries or reorder this array! It is used as a lookup * table: the index of each entry is one less than the TLS curve id. */ static const tls_curve_info nid_list[] = { {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ /* X25519 (29) */ {NID_X25519, 128, TLS_CURVE_CUSTOM}, }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; /* The default curves */ static const unsigned char eccurves_default[] = { 0, 29, /* X25519 (29) */ 0, 23, /* secp256r1 (23) */ 0, 25, /* secp521r1 (25) */ 0, 24, /* secp384r1 (24) */ }; static const unsigned char eccurves_all[] = { 0, 29, /* X25519 (29) */ 0, 23, /* secp256r1 (23) */ 0, 25, /* secp521r1 (25) */ 0, 24, /* secp384r1 (24) */ 0, 26, /* brainpoolP256r1 (26) */ 0, 27, /* brainpoolP384r1 (27) */ 0, 28, /* brainpool512r1 (28) */ /* * Remaining curves disabled by default but still permitted if set * via an explicit callback or parameters. */ 0, 22, /* secp256k1 (22) */ 0, 14, /* sect571r1 (14) */ 0, 13, /* sect571k1 (13) */ 0, 11, /* sect409k1 (11) */ 0, 12, /* sect409r1 (12) */ 0, 9, /* sect283k1 (9) */ 0, 10, /* sect283r1 (10) */ 0, 20, /* secp224k1 (20) */ 0, 21, /* secp224r1 (21) */ 0, 18, /* secp192k1 (18) */ 0, 19, /* secp192r1 (19) */ 0, 15, /* secp160k1 (15) */ 0, 16, /* secp160r1 (16) */ 0, 17, /* secp160r2 (17) */ 0, 8, /* sect239k1 (8) */ 0, 6, /* sect233k1 (6) */ 0, 7, /* sect233r1 (7) */ 0, 4, /* sect193r1 (4) */ 0, 5, /* sect193r2 (5) */ 0, 1, /* sect163k1 (1) */ 0, 2, /* sect163r1 (2) */ 0, 3, /* sect163r2 (3) */ }; static const unsigned char suiteb_curves[] = { 0, TLSEXT_curve_P_256, 0, TLSEXT_curve_P_384 }; int tls1_ec_curve_id2nid(int curve_id) { /* ECC curves from RFC 4492 and RFC 7027 */ if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list))) return 0; return nid_list[curve_id - 1].nid; } int tls1_ec_nid2curve_id(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(nid_list); i++) { if (nid_list[i].nid == nid) return i + 1; } return 0; } /* * Get curves list, if "sess" is set return client curves otherwise * preferred list. * Sets |num_curves| to the number of curves in the list, i.e., * the length of |pcurves| is 2 * num_curves. * Returns 1 on success and 0 if the client curves list has invalid format. * The latter indicates an internal error: we should not be accepting such * lists in the first place. * TODO(emilia): we should really be storing the curves list in explicitly * parsed form instead. (However, this would affect binary compatibility * so cannot happen in the 1.0.x series.) */ static int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *num_curves) { size_t pcurveslen = 0; if (sess) { *pcurves = s->session->tlsext_ellipticcurvelist; pcurveslen = s->session->tlsext_ellipticcurvelist_length; } else { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pcurves = suiteb_curves; pcurveslen = sizeof(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pcurves = suiteb_curves; pcurveslen = 2; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pcurves = suiteb_curves + 2; pcurveslen = 2; break; default: *pcurves = s->tlsext_ellipticcurvelist; pcurveslen = s->tlsext_ellipticcurvelist_length; } if (!*pcurves) { *pcurves = eccurves_default; pcurveslen = sizeof(eccurves_default); } } /* We do not allow odd length arrays to enter the system. */ if (pcurveslen & 1) { SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR); *num_curves = 0; return 0; } else { *num_curves = pcurveslen / 2; return 1; } } /* See if curve is allowed by security callback */ static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op) { const tls_curve_info *cinfo; if (curve[0]) return 1; if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list))) return 0; cinfo = &nid_list[curve[1] - 1]; # ifdef OPENSSL_NO_EC2M if (cinfo->flags & TLS_CURVE_CHAR2) return 0; # endif return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve); } /* Check a curve is one of our preferences */ int tls1_check_curve(SSL *s, const unsigned char *p, size_t len) { const unsigned char *curves; size_t num_curves, i; unsigned int suiteb_flags = tls1_suiteb(s); if (len != 3 || p[0] != NAMED_CURVE_TYPE) return 0; /* Check curve matches Suite B preferences */ if (suiteb_flags) { unsigned long cid = s->s3->tmp.new_cipher->id; if (p[1]) return 0; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (p[2] != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (p[2] != TLSEXT_curve_P_384) return 0; } else /* Should never happen */ return 0; } if (!tls1_get_curvelist(s, 0, &curves, &num_curves)) return 0; for (i = 0; i < num_curves; i++, curves += 2) { if (p[1] == curves[0] && p[2] == curves[1]) return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK); } return 0; } /*- * For nmatch >= 0, return the NID of the |nmatch|th shared curve or NID_undef * if there is no match. * For nmatch == -1, return number of matches * For nmatch == -2, return the NID of the curve to use for * an EC tmp key, or NID_undef if there is no match. */ int tls1_shared_curve(SSL *s, int nmatch) { const unsigned char *pref, *supp; size_t num_pref, num_supp, i, j; int k; /* Can't do anything on client side */ if (s->server == 0) return -1; if (nmatch == -2) { if (tls1_suiteb(s)) { /* * For Suite B ciphersuite determines curve: we already know * these are acceptable due to previous checks. */ unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return NID_X9_62_prime256v1; /* P-256 */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return NID_secp384r1; /* P-384 */ /* Should never happen */ return NID_undef; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } /* * Avoid truncation. tls1_get_curvelist takes an int * but s->options is a long... */ if (!tls1_get_curvelist (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp, &num_supp)) /* In practice, NID_undef == 0 but let's be precise. */ return nmatch == -1 ? 0 : NID_undef; if (!tls1_get_curvelist (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref, &num_pref)) return nmatch == -1 ? 0 : NID_undef; /* * If the client didn't send the elliptic_curves extension all of them * are allowed. */ if (num_supp == 0 && (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0) { supp = eccurves_all; num_supp = sizeof(eccurves_all) / 2; } else if (num_pref == 0 && (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0) { pref = eccurves_all; num_pref = sizeof(eccurves_all) / 2; } k = 0; for (i = 0; i < num_pref; i++, pref += 2) { const unsigned char *tsupp = supp; for (j = 0; j < num_supp; j++, tsupp += 2) { if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED)) continue; if (nmatch == k) { int id = (pref[0] << 8) | pref[1]; return tls1_ec_curve_id2nid(id); } k++; } } } if (nmatch == -1) return k; /* Out of range (nmatch > k). */ return NID_undef; } int tls1_set_curves(unsigned char **pext, size_t *pextlen, int *curves, size_t ncurves) { unsigned char *clist, *p; size_t i; /* * Bitmap of curves included to detect duplicates: only works while curve * ids < 32 */ unsigned long dup_list = 0; clist = OPENSSL_malloc(ncurves * 2); if (clist == NULL) return 0; for (i = 0, p = clist; i < ncurves; i++) { unsigned long idmask; int id; id = tls1_ec_nid2curve_id(curves[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(clist); return 0; } dup_list |= idmask; s2n(id, p); } OPENSSL_free(*pext); *pext = clist; *pextlen = ncurves * 2; return 1; } # define MAX_CURVELIST 28 typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (elem == NULL) return 0; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set curves based on a colon separate list */ int tls1_set_curves_list(unsigned char **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; if (pext == NULL) return 1; return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } /* For an EC key set TLS id and required compression based on parameters */ static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, EC_KEY *ec) { int id; const EC_GROUP *grp; if (!ec) return 0; /* Determine if it is a prime field */ grp = EC_KEY_get0_group(ec); if (!grp) return 0; /* Determine curve ID */ id = EC_GROUP_get_curve_name(grp); id = tls1_ec_nid2curve_id(id); /* If no id return error: we don't support arbitrary explicit curves */ if (id == 0) return 0; curve_id[0] = 0; curve_id[1] = (unsigned char)id; if (comp_id) { if (EC_KEY_get0_public_key(ec) == NULL) return 0; if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } else { if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME) *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } } return 1; } /* Check an EC key is compatible with extensions */ static int tls1_check_ec_key(SSL *s, unsigned char *curve_id, unsigned char *comp_id) { const unsigned char *pformats, *pcurves; size_t num_formats, num_curves, i; int j; /* * If point formats extension present check it, otherwise everything is * supported (see RFC4492). */ if (comp_id && s->session->tlsext_ecpointformatlist) { pformats = s->session->tlsext_ecpointformatlist; num_formats = s->session->tlsext_ecpointformatlist_length; for (i = 0; i < num_formats; i++, pformats++) { if (*comp_id == *pformats) break; } if (i == num_formats) return 0; } if (!curve_id) return 1; /* Check curve is consistent with client and server preferences */ for (j = 0; j <= 1; j++) { if (!tls1_get_curvelist(s, j, &pcurves, &num_curves)) return 0; if (j == 1 && num_curves == 0) { /* * If we've not received any curves then skip this check. * RFC 4492 does not require the supported elliptic curves extension * so if it is not sent we can just choose any curve. * It is invalid to send an empty list in the elliptic curves * extension, so num_curves == 0 always means no extension. */ break; } for (i = 0; i < num_curves; i++, pcurves += 2) { if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1]) break; } if (i == num_curves) return 0; /* For clients can only check sent curve list */ if (!s->server) break; } return 1; } static void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats) { /* * If we have a custom point format list use it otherwise use default */ if (s->tlsext_ecpointformatlist) { *pformats = s->tlsext_ecpointformatlist; *num_formats = s->tlsext_ecpointformatlist_length; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *num_formats = sizeof(ecformats_default) - 1; else *num_formats = sizeof(ecformats_default); } } /* * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { unsigned char comp_id, curve_id[2]; EVP_PKEY *pkey; int rv; pkey = X509_get0_pubkey(x); if (!pkey) return 0; /* If not EC nothing to do */ if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) return 1; rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey)); if (!rv) return 0; /* * Can't check curve_id for client certs as we don't have a supported * curves extension. */ rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id); if (!rv) return 0; /* * Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384, adjust digest if necessary. */ if (set_ee_md && tls1_suiteb(s)) { int check_md; size_t i; CERT *c = s->cert; if (curve_id[0]) return 0; /* Check to see we have necessary signing algorithm */ if (curve_id[1] == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (curve_id[1] == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < c->shared_sigalgslen; i++) if (check_md == c->shared_sigalgs[i].signandhash_nid) break; if (i == c->shared_sigalgslen) return 0; if (set_ee_md == 2) { if (check_md == NID_ecdsa_with_SHA256) s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256(); else s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384(); } } return rv; } # ifndef OPENSSL_NO_EC /* * tls1_check_ec_tmp_key - Check EC temporary key compatibility * @s: SSL connection * @cid: Cipher ID we're considering using * * Checks that the kECDHE cipher suite we're considering using * is compatible with the client extensions. * * Returns 0 when the cipher can't be used or 1 when it can. */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { /* * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other * curves permitted. */ if (tls1_suiteb(s)) { unsigned char curve_id[2]; /* Curve to check determined by ciphersuite */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) curve_id[1] = TLSEXT_curve_P_256; else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) curve_id[1] = TLSEXT_curve_P_384; else return 0; curve_id[0] = 0; /* Check this curve is acceptable */ if (!tls1_check_ec_key(s, curve_id, NULL)) return 0; return 1; } /* Need a shared curve */ if (tls1_shared_curve(s, 0)) return 1; return 0; } # endif /* OPENSSL_NO_EC */ #else static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { return 1; } #endif /* OPENSSL_NO_EC */ /* * List of supported signature algorithms and hashes. Should make this * customisable at some point, for now include everything we support. */ #ifdef OPENSSL_NO_RSA # define tlsext_sigalg_rsa(md) /* */ #else # define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa, #endif #ifdef OPENSSL_NO_DSA # define tlsext_sigalg_dsa(md) /* */ #else # define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa, #endif #ifdef OPENSSL_NO_EC # define tlsext_sigalg_ecdsa(md) /* */ #else # define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa, #endif #define tlsext_sigalg(md) \ tlsext_sigalg_rsa(md) \ tlsext_sigalg_dsa(md) \ tlsext_sigalg_ecdsa(md) static const unsigned char tls12_sigalgs[] = { tlsext_sigalg(TLSEXT_hash_sha512) tlsext_sigalg(TLSEXT_hash_sha384) tlsext_sigalg(TLSEXT_hash_sha256) tlsext_sigalg(TLSEXT_hash_sha224) tlsext_sigalg(TLSEXT_hash_sha1) #ifndef OPENSSL_NO_GOST TLSEXT_hash_gostr3411, TLSEXT_signature_gostr34102001, TLSEXT_hash_gostr34112012_256, TLSEXT_signature_gostr34102012_256, TLSEXT_hash_gostr34112012_512, TLSEXT_signature_gostr34102012_512 #endif }; #ifndef OPENSSL_NO_EC static const unsigned char suiteb_sigalgs[] = { tlsext_sigalg_ecdsa(TLSEXT_hash_sha256) tlsext_sigalg_ecdsa(TLSEXT_hash_sha384) }; #endif size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ #ifndef OPENSSL_NO_EC switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return sizeof(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 2; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 2; return 2; } #endif /* If server use client authentication sigalgs if not NULL */ if (s->server && s->cert->client_sigalgs) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return sizeof(tls12_sigalgs); } } /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so return relevant digest. */ int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s, const unsigned char *sig, EVP_PKEY *pkey) { const unsigned char *sent_sigs; size_t sent_sigslen, i; int sigalg = tls12_get_sigid(pkey); /* Should never happen */ if (sigalg == -1) return -1; /* Check key type is consistent with signature */ if (sigalg != (int)sig[1]) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } #ifndef OPENSSL_NO_EC if (EVP_PKEY_id(pkey) == EVP_PKEY_EC) { unsigned char curve_id[2], comp_id; /* Check compression and curve matches extensions */ if (!tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey))) return 0; if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */ if (tls1_suiteb(s)) { if (curve_id[0]) return 0; if (curve_id[1] == TLSEXT_curve_P_256) { if (sig[0] != TLSEXT_hash_sha256) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_SUITEB_DIGEST); return 0; } } else if (curve_id[1] == TLSEXT_curve_P_384) { if (sig[0] != TLSEXT_hash_sha384) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_SUITEB_DIGEST); return 0; } } else return 0; } } else if (tls1_suiteb(s)) return 0; #endif /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, &sent_sigs); for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) { if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1]) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (sig[0] != TLSEXT_hash_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } *pmd = tls12_get_hash(sig[0]); if (*pmd == NULL) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST); return 0; } /* Make sure security callback allows algorithm */ if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK, EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd), (void *)sig)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* * Store the digest used so applications can retrieve it if they wish. */ s->s3->tmp.peer_md = *pmd; return 1; } /* * Set a mask of disabled algorithms: an algorithm is disabled if it isn't * supported, doesn't appear in supported signature algorithms, isn't supported * by the enabled protocol versions or by the security level. * * This function should only be used for checking which ciphers are supported * by the client. * * Call ssl_cipher_disabled() to check that it's enabled or not. */ void ssl_set_client_disabled(SSL *s) { s->s3->tmp.mask_a = 0; s->s3->tmp.mask_k = 0; ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver); # ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { s->s3->tmp.mask_a |= SSL_aPSK; s->s3->tmp.mask_k |= SSL_PSK; } #endif /* OPENSSL_NO_PSK */ #ifndef OPENSSL_NO_SRP if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { s->s3->tmp.mask_a |= SSL_aSRP; s->s3->tmp.mask_k |= SSL_kSRP; } #endif } /* * ssl_cipher_disabled - check that a cipher is disabled or not * @s: SSL connection that you want to use the cipher on * @c: cipher to check * @op: Security check that you want to do * * Returns 1 when it's disabled, 0 when enabled. */ int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op) { if (c->algorithm_mkey & s->s3->tmp.mask_k || c->algorithm_auth & s->s3->tmp.mask_a) return 1; if (s->s3->tmp.max_ver == 0) return 1; if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))) return 1; if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } static int tls_use_ticket(SSL *s) { if (s->options & SSL_OP_NO_TICKET) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } static int compare_uint(const void *p1, const void *p2) { unsigned int u1 = *((const unsigned int *)p1); unsigned int u2 = *((const unsigned int *)p2); if (u1 < u2) return -1; else if (u1 > u2) return 1; else return 0; } /* * Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be * more than one extension of the same type in a ClientHello or ServerHello. * This function does an initial scan over the extensions block to filter those * out. It returns 1 if all extensions are unique, and 0 if the extensions * contain duplicates, could not be successfully parsed, or an internal error * occurred. */ static int tls1_check_duplicate_extensions(const PACKET *packet) { PACKET extensions = *packet; size_t num_extensions = 0, i = 0; unsigned int *extension_types = NULL; int ret = 0; /* First pass: count the extensions. */ while (PACKET_remaining(&extensions) > 0) { unsigned int type; PACKET extension; if (!PACKET_get_net_2(&extensions, &type) || !PACKET_get_length_prefixed_2(&extensions, &extension)) { goto done; } num_extensions++; } if (num_extensions <= 1) return 1; extension_types = OPENSSL_malloc(sizeof(unsigned int) * num_extensions); if (extension_types == NULL) { SSLerr(SSL_F_TLS1_CHECK_DUPLICATE_EXTENSIONS, ERR_R_MALLOC_FAILURE); goto done; } /* Second pass: gather the extension types. */ extensions = *packet; for (i = 0; i < num_extensions; i++) { PACKET extension; if (!PACKET_get_net_2(&extensions, &extension_types[i]) || !PACKET_get_length_prefixed_2(&extensions, &extension)) { /* This should not happen. */ SSLerr(SSL_F_TLS1_CHECK_DUPLICATE_EXTENSIONS, ERR_R_INTERNAL_ERROR); goto done; } } if (PACKET_remaining(&extensions) != 0) { SSLerr(SSL_F_TLS1_CHECK_DUPLICATE_EXTENSIONS, ERR_R_INTERNAL_ERROR); goto done; } /* Sort the extensions and make sure there are no duplicates. */ qsort(extension_types, num_extensions, sizeof(unsigned int), compare_uint); for (i = 1; i < num_extensions; i++) { if (extension_types[i - 1] == extension_types[i]) goto done; } ret = 1; done: OPENSSL_free(extension_types); return ret; } unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al) { int extdatalen = 0; unsigned char *orig = buf; unsigned char *ret = buf; #ifndef OPENSSL_NO_EC /* See if we support any ECC ciphersuites */ int using_ecc = 0; if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) { int i; unsigned long alg_k, alg_a; STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s); for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i); alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if ((alg_k & (SSL_kECDHE | SSL_kECDHEPSK)) || (alg_a & SSL_aECDSA)) { using_ecc = 1; break; } } } #endif ret += 2; if (ret >= limit) return NULL; /* this really never occurs, but ... */ /* Add RI if renegotiating */ if (s->renegotiate) { int el; if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate, ret); s2n(el, ret); if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } /* Only add RI for SSLv3 */ if (s->client_version == SSL3_VERSION) goto done; if (s->tlsext_hostname != NULL) { /* Add TLS extension servername to the Client Hello message */ unsigned long size_str; long lenmax; /*- * check for enough space. * 4 for the servername type and extension length * 2 for servernamelist length * 1 for the hostname type * 2 for hostname length * + hostname length */ if ((lenmax = limit - ret - 9) < 0 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax) return NULL; /* extension type and length */ s2n(TLSEXT_TYPE_server_name, ret); s2n(size_str + 5, ret); /* length of servername list */ s2n(size_str + 3, ret); /* hostname type, length and hostname */ *(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name; s2n(size_str, ret); memcpy(ret, s->tlsext_hostname, size_str); ret += size_str; } #ifndef OPENSSL_NO_SRP /* Add SRP username if there is one */ if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the * Client Hello message */ int login_len = strlen(s->srp_ctx.login); if (login_len > 255 || login_len == 0) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } /*- * check for enough space. * 4 for the srp type type and extension length * 1 for the srp user identity * + srp user identity length */ if ((limit - ret - 5 - login_len) < 0) return NULL; /* fill in the extension */ s2n(TLSEXT_TYPE_srp, ret); s2n(login_len + 1, ret); (*ret++) = (unsigned char)login_len; memcpy(ret, s->srp_ctx.login, login_len); ret += login_len; } #endif #ifndef OPENSSL_NO_EC if (using_ecc) { /* * Add TLS extension ECPointFormats to the ClientHello message */ long lenmax; const unsigned char *pcurves, *pformats; size_t num_curves, num_formats, curves_list_len; size_t i; unsigned char *etmp; tls1_get_formatlist(s, &pformats, &num_formats); if ((lenmax = limit - ret - 5) < 0) return NULL; if (num_formats > (size_t)lenmax) return NULL; if (num_formats > 255) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats, ret); /* The point format list has 1-byte length. */ s2n(num_formats + 1, ret); *(ret++) = (unsigned char)num_formats; memcpy(ret, pformats, num_formats); ret += num_formats; /* * Add TLS extension EllipticCurves to the ClientHello message */ pcurves = s->tlsext_ellipticcurvelist; if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves)) return NULL; if ((lenmax = limit - ret - 6) < 0) return NULL; if (num_curves > (size_t)lenmax / 2) return NULL; if (num_curves > 65532 / 2) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_elliptic_curves, ret); etmp = ret + 4; /* Copy curve ID if supported */ for (i = 0; i < num_curves; i++, pcurves += 2) { if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED)) { *etmp++ = pcurves[0]; *etmp++ = pcurves[1]; } } curves_list_len = etmp - ret - 4; s2n(curves_list_len + 2, ret); s2n(curves_list_len, ret); ret += curves_list_len; } #endif /* OPENSSL_NO_EC */ if (tls_use_ticket(s)) { int ticklen; if (!s->new_session && s->session && s->session->tlsext_tick) ticklen = s->session->tlsext_ticklen; else if (s->session && s->tlsext_session_ticket && s->tlsext_session_ticket->data) { ticklen = s->tlsext_session_ticket->length; s->session->tlsext_tick = OPENSSL_malloc(ticklen); if (s->session->tlsext_tick == NULL) return NULL; memcpy(s->session->tlsext_tick, s->tlsext_session_ticket->data, ticklen); s->session->tlsext_ticklen = ticklen; } else ticklen = 0; if (ticklen == 0 && s->tlsext_session_ticket && s->tlsext_session_ticket->data == NULL) goto skip_ext; /* * Check for enough room 2 for extension type, 2 for len rest for * ticket */ if ((long)(limit - ret - 4 - ticklen) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket, ret); s2n(ticklen, ret); if (ticklen) { memcpy(ret, s->session->tlsext_tick, ticklen); ret += ticklen; } } skip_ext: if (SSL_CLIENT_USE_SIGALGS(s)) { size_t salglen; const unsigned char *salg; unsigned char *etmp; salglen = tls12_get_psigalgs(s, &salg); if ((size_t)(limit - ret) < salglen + 6) return NULL; s2n(TLSEXT_TYPE_signature_algorithms, ret); etmp = ret; /* Skip over lengths for now */ ret += 4; salglen = tls12_copy_sigalgs(s, ret, salg, salglen); /* Fill in lengths */ s2n(salglen + 2, etmp); s2n(salglen, etmp); ret += salglen; } #ifndef OPENSSL_NO_OCSP if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { int i; long extlen, idlen, itmp; OCSP_RESPID *id; idlen = 0; for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); itmp = i2d_OCSP_RESPID(id, NULL); if (itmp <= 0) return NULL; idlen += itmp + 2; } if (s->tlsext_ocsp_exts) { extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL); if (extlen < 0) return NULL; } else extlen = 0; if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); if (extlen + idlen > 0xFFF0) return NULL; s2n(extlen + idlen + 5, ret); *(ret++) = TLSEXT_STATUSTYPE_ocsp; s2n(idlen, ret); for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) { /* save position of id len */ unsigned char *q = ret; id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i); /* skip over id len */ ret += 2; itmp = i2d_OCSP_RESPID(id, &ret); /* write id len */ s2n(itmp, q); } s2n(extlen, ret); if (extlen > 0) i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret); } #endif #ifndef OPENSSL_NO_HEARTBEATS if (SSL_IS_DTLS(s)) { /* Add Heartbeat extension */ if ((limit - ret - 4 - 1) < 0) return NULL; s2n(TLSEXT_TYPE_heartbeat, ret); s2n(1, ret); /*- * Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_DTLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_DTLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_DTLSEXT_HB_ENABLED; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) { /* * The client advertises an empty extension to indicate its support * for Next Protocol Negotiation */ if (limit - ret - 4 < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg, ret); s2n(0, ret); } #endif /* * finish_md_len is non-zero during a renegotiation, so * this avoids sending ALPN during the renegotiation * (see longer comment below) */ if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) { if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); s2n(2 + s->alpn_client_proto_list_len, ret); s2n(s->alpn_client_proto_list_len, ret); memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len); ret += s->alpn_client_proto_list_len; s->s3->alpn_sent = 1; } #ifndef OPENSSL_NO_SRTP if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) { int el; /* Returns 0 on success!! */ if (ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp, ret); s2n(el, ret); if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #endif custom_ext_init(&s->cert->cli_ext); /* Add custom TLS Extensions to ClientHello */ if (!custom_ext_add(s, 0, &ret, limit, al)) return NULL; s2n(TLSEXT_TYPE_encrypt_then_mac, ret); s2n(0, ret); #ifndef OPENSSL_NO_CT if (s->ct_validation_callback != NULL) { s2n(TLSEXT_TYPE_signed_certificate_timestamp, ret); s2n(0, ret); } #endif s2n(TLSEXT_TYPE_extended_master_secret, ret); s2n(0, ret); /* * Add padding to workaround bugs in F5 terminators. See * https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this * code works out the length of all existing extensions it MUST always * appear last. */ if (s->options & SSL_OP_TLSEXT_PADDING) { int hlen = ret - (unsigned char *)s->init_buf->data; if (hlen > 0xff && hlen < 0x200) { hlen = 0x200 - hlen; if (hlen >= 4) hlen -= 4; else hlen = 0; s2n(TLSEXT_TYPE_padding, ret); s2n(hlen, ret); memset(ret, 0, hlen); ret += hlen; } } done: if ((extdatalen = ret - orig - 2) == 0) return orig; s2n(extdatalen, orig); return ret; } unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al) { int extdatalen = 0; unsigned char *orig = buf; unsigned char *ret = buf; #ifndef OPENSSL_NO_NEXTPROTONEG int next_proto_neg_seen; #endif #ifndef OPENSSL_NO_EC unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; int using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA); using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL); #endif ret += 2; if (ret >= limit) return NULL; /* this really never occurs, but ... */ if (s->s3->send_connection_binding) { int el; if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_renegotiate, ret); s2n(el, ret); if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } /* Only add RI for SSLv3 */ if (s->version == SSL3_VERSION) goto done; if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_server_name, ret); s2n(0, ret); } #ifndef OPENSSL_NO_EC if (using_ecc) { const unsigned char *plist; size_t plistlen; /* * Add TLS extension ECPointFormats to the ServerHello message */ long lenmax; tls1_get_formatlist(s, &plist, &plistlen); if ((lenmax = limit - ret - 5) < 0) return NULL; if (plistlen > (size_t)lenmax) return NULL; if (plistlen > 255) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } s2n(TLSEXT_TYPE_ec_point_formats, ret); s2n(plistlen + 1, ret); *(ret++) = (unsigned char)plistlen; memcpy(ret, plist, plistlen); ret += plistlen; } /* * Currently the server should not respond with a SupportedCurves * extension */ #endif /* OPENSSL_NO_EC */ if (s->tlsext_ticket_expected && tls_use_ticket(s)) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_session_ticket, ret); s2n(0, ret); } else { /* if we don't add the above TLSEXT, we can't add a session ticket later */ s->tlsext_ticket_expected = 0; } if (s->tlsext_status_expected) { if ((long)(limit - ret - 4) < 0) return NULL; s2n(TLSEXT_TYPE_status_request, ret); s2n(0, ret); } #ifndef OPENSSL_NO_SRTP if (SSL_IS_DTLS(s) && s->srtp_profile) { int el; /* Returns 0 on success!! */ if (ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } if ((limit - ret - 4 - el) < 0) return NULL; s2n(TLSEXT_TYPE_use_srtp, ret); s2n(el, ret); if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) { SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR); return NULL; } ret += el; } #endif if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80 || (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81) && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) { const unsigned char cryptopro_ext[36] = { 0xfd, 0xe8, /* 65000 */ 0x00, 0x20, /* 32 bytes length */ 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17 }; if (limit - ret < 36) return NULL; memcpy(ret, cryptopro_ext, 36); ret += 36; } #ifndef OPENSSL_NO_HEARTBEATS /* Add Heartbeat extension if we've received one */ if (SSL_IS_DTLS(s) && (s->tlsext_heartbeat & SSL_DTLSEXT_HB_ENABLED)) { if ((limit - ret - 4 - 1) < 0) return NULL; s2n(TLSEXT_TYPE_heartbeat, ret); s2n(1, ret); /*- * Set mode: * 1: peer may send requests * 2: peer not allowed to send requests */ if (s->tlsext_heartbeat & SSL_DTLSEXT_HB_DONT_RECV_REQUESTS) *(ret++) = SSL_DTLSEXT_HB_DONT_SEND_REQUESTS; else *(ret++) = SSL_DTLSEXT_HB_ENABLED; } #endif #ifndef OPENSSL_NO_NEXTPROTONEG next_proto_neg_seen = s->s3->next_proto_neg_seen; s->s3->next_proto_neg_seen = 0; if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) { const unsigned char *npa; unsigned int npalen; int r; r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s-> ctx->next_protos_advertised_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { if ((long)(limit - ret - 4 - npalen) < 0) return NULL; s2n(TLSEXT_TYPE_next_proto_neg, ret); s2n(npalen, ret); memcpy(ret, npa, npalen); ret += npalen; s->s3->next_proto_neg_seen = 1; } } #endif if (!custom_ext_add(s, 1, &ret, limit, al)) return NULL; if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC) { /* * Don't use encrypt_then_mac if AEAD or RC4 might want to disable * for other cases too. */ if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD || s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4 || s->s3->tmp.new_cipher->algorithm_enc == SSL_eGOST2814789CNT || s->s3->tmp.new_cipher->algorithm_enc == SSL_eGOST2814789CNT12) s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; else { s2n(TLSEXT_TYPE_encrypt_then_mac, ret); s2n(0, ret); } } if (s->s3->flags & TLS1_FLAGS_RECEIVED_EXTMS) { s2n(TLSEXT_TYPE_extended_master_secret, ret); s2n(0, ret); } if (s->s3->alpn_selected != NULL) { const unsigned char *selected = s->s3->alpn_selected; unsigned int len = s->s3->alpn_selected_len; if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) return NULL; s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret); s2n(3 + len, ret); s2n(1 + len, ret); *ret++ = len; memcpy(ret, selected, len); ret += len; } done: if ((extdatalen = ret - orig - 2) == 0) return orig; s2n(extdatalen, orig); return ret; } /* * Save the ALPN extension in a ClientHello. * pkt: the contents of the ALPN extension, not including type and length. * al: a pointer to the alert value to send in the event of a failure. * returns: 1 on success, 0 on error. */ static int tls1_alpn_handle_client_hello(SSL *s, PACKET *pkt, int *al) { PACKET protocol_list, save_protocol_list, protocol; *al = SSL_AD_DECODE_ERROR; if (!PACKET_as_length_prefixed_2(pkt, &protocol_list) || PACKET_remaining(&protocol_list) < 2) { return 0; } save_protocol_list = protocol_list; do { /* Protocol names can't be empty. */ if (!PACKET_get_length_prefixed_1(&protocol_list, &protocol) || PACKET_remaining(&protocol) == 0) { return 0; } } while (PACKET_remaining(&protocol_list) != 0); if (!PACKET_memdup(&save_protocol_list, &s->s3->alpn_proposed, &s->s3->alpn_proposed_len)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } return 1; } /* * Process the ALPN extension in a ClientHello. * al: a pointer to the alert value to send in the event of a failure. * returns 1 on success, 0 on error. */ static int tls1_alpn_handle_client_hello_late(SSL *s, int *al) { const unsigned char *selected = NULL; unsigned char selected_len = 0; if (s->ctx->alpn_select_cb != NULL && s->s3->alpn_proposed != NULL) { int r = s->ctx->alpn_select_cb(s, &selected, &selected_len, s->s3->alpn_proposed, s->s3->alpn_proposed_len, s->ctx->alpn_select_cb_arg); if (r == SSL_TLSEXT_ERR_OK) { OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_memdup(selected, selected_len); if (s->s3->alpn_selected == NULL) { *al = SSL_AD_INTERNAL_ERROR; return 0; } s->s3->alpn_selected_len = selected_len; #ifndef OPENSSL_NO_NEXTPROTONEG /* ALPN takes precedence over NPN. */ s->s3->next_proto_neg_seen = 0; #endif } else { *al = SSL_AD_NO_APPLICATION_PROTOCOL; return 0; } } return 1; } #ifndef OPENSSL_NO_EC /*- * ssl_check_for_safari attempts to fingerprint Safari using OS X * SecureTransport using the TLS extension block in |pkt|. * Safari, since 10.6, sends exactly these extensions, in this order: * SNI, * elliptic_curves * ec_point_formats * * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8, * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them. * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from * 10.8..10.8.3 (which don't work). */ static void ssl_check_for_safari(SSL *s, const PACKET *pkt) { unsigned int type; PACKET sni, tmppkt; size_t ext_len; static const unsigned char kSafariExtensionsBlock[] = { 0x00, 0x0a, /* elliptic_curves extension */ 0x00, 0x08, /* 8 bytes */ 0x00, 0x06, /* 6 bytes of curve ids */ 0x00, 0x17, /* P-256 */ 0x00, 0x18, /* P-384 */ 0x00, 0x19, /* P-521 */ 0x00, 0x0b, /* ec_point_formats */ 0x00, 0x02, /* 2 bytes */ 0x01, /* 1 point format */ 0x00, /* uncompressed */ /* The following is only present in TLS 1.2 */ 0x00, 0x0d, /* signature_algorithms */ 0x00, 0x0c, /* 12 bytes */ 0x00, 0x0a, /* 10 bytes */ 0x05, 0x01, /* SHA-384/RSA */ 0x04, 0x01, /* SHA-256/RSA */ 0x02, 0x01, /* SHA-1/RSA */ 0x04, 0x03, /* SHA-256/ECDSA */ 0x02, 0x03, /* SHA-1/ECDSA */ }; /* Length of the common prefix (first two extensions). */ static const size_t kSafariCommonExtensionsLength = 18; tmppkt = *pkt; if (!PACKET_forward(&tmppkt, 2) || !PACKET_get_net_2(&tmppkt, &type) || !PACKET_get_length_prefixed_2(&tmppkt, &sni)) { return; } if (type != TLSEXT_TYPE_server_name) return; ext_len = TLS1_get_client_version(s) >= TLS1_2_VERSION ? sizeof(kSafariExtensionsBlock) : kSafariCommonExtensionsLength; s->s3->is_probably_safari = PACKET_equal(&tmppkt, kSafariExtensionsBlock, ext_len); } #endif /* !OPENSSL_NO_EC */ /* * Parse ClientHello extensions and stash extension info in various parts of * the SSL object. Verify that there are no duplicate extensions. * * Behaviour upon resumption is extension-specific. If the extension has no * effect during resumption, it is parsed (to verify its format) but otherwise * ignored. * * Consumes the entire packet in |pkt|. Returns 1 on success and 0 on failure. * Upon failure, sets |al| to the appropriate alert. */ static int ssl_scan_clienthello_tlsext(SSL *s, PACKET *pkt, int *al) { unsigned int type; int renegotiate_seen = 0; PACKET extensions; *al = SSL_AD_DECODE_ERROR; s->servername_done = 0; s->tlsext_status_type = -1; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; s->s3->alpn_selected_len = 0; OPENSSL_free(s->s3->alpn_proposed); s->s3->alpn_proposed = NULL; s->s3->alpn_proposed_len = 0; #ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_DTLSEXT_HB_ENABLED | SSL_DTLSEXT_HB_DONT_SEND_REQUESTS); #endif #ifndef OPENSSL_NO_EC if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG) ssl_check_for_safari(s, pkt); # endif /* !OPENSSL_NO_EC */ /* Clear any signature algorithms extension received */ OPENSSL_free(s->s3->tmp.peer_sigalgs); s->s3->tmp.peer_sigalgs = NULL; s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; #ifndef OPENSSL_NO_SRP OPENSSL_free(s->srp_ctx.login); s->srp_ctx.login = NULL; #endif s->srtp_profile = NULL; if (PACKET_remaining(pkt) == 0) goto ri_check; if (!PACKET_as_length_prefixed_2(pkt, &extensions)) return 0; if (!tls1_check_duplicate_extensions(&extensions)) return 0; /* * We parse all extensions to ensure the ClientHello is well-formed but, * unless an extension specifies otherwise, we ignore extensions upon * resumption. */ while (PACKET_get_net_2(&extensions, &type)) { PACKET extension; if (!PACKET_get_length_prefixed_2(&extensions, &extension)) return 0; if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 0, type, PACKET_data(&extension), PACKET_remaining(&extension), s->tlsext_debug_arg); if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_clienthello_renegotiate_ext(s, &extension, al)) return 0; renegotiate_seen = 1; } else if (s->version == SSL3_VERSION) { } /*- * The servername extension is treated as follows: * * - Only the hostname type is supported with a maximum length of 255. * - The servername is rejected if too long or if it contains zeros, * in which case an fatal alert is generated. * - The servername field is maintained together with the session cache. * - When a session is resumed, the servername call back invoked in order * to allow the application to position itself to the right context. * - The servername is acknowledged if it is new for a session or when * it is identical to a previously used for the same session. * Applications can control the behaviour. They can at any time * set a 'desirable' servername for a new SSL object. This can be the * case for example with HTTPS when a Host: header field is received and * a renegotiation is requested. In this case, a possible servername * presented in the new client hello is only acknowledged if it matches * the value of the Host: field. * - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION * if they provide for changing an explicit servername context for the * session, i.e. when the session has been established with a servername * extension. * - On session reconnect, the servername extension may be absent. * */ else if (type == TLSEXT_TYPE_server_name) { unsigned int servname_type; PACKET sni, hostname; if (!PACKET_as_length_prefixed_2(&extension, &sni) /* ServerNameList must be at least 1 byte long. */ || PACKET_remaining(&sni) == 0) { return 0; } /* * Although the server_name extension was intended to be * extensible to new name types, RFC 4366 defined the * syntax inextensibility and OpenSSL 1.0.x parses it as * such. * RFC 6066 corrected the mistake but adding new name types * is nevertheless no longer feasible, so act as if no other * SNI types can exist, to simplify parsing. * * Also note that the RFC permits only one SNI value per type, * i.e., we can only have a single hostname. */ if (!PACKET_get_1(&sni, &servname_type) || servname_type != TLSEXT_NAMETYPE_host_name || !PACKET_as_length_prefixed_2(&sni, &hostname)) { return 0; } if (!s->hit) { if (PACKET_remaining(&hostname) > TLSEXT_MAXLEN_host_name) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } if (PACKET_contains_zero_byte(&hostname)) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } if (!PACKET_strndup(&hostname, &s->session->tlsext_hostname)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->servername_done = 1; } else { /* * TODO(openssl-team): if the SNI doesn't match, we MUST * fall back to a full handshake. */ s->servername_done = s->session->tlsext_hostname && PACKET_equal(&hostname, s->session->tlsext_hostname, strlen(s->session->tlsext_hostname)); } } #ifndef OPENSSL_NO_SRP else if (type == TLSEXT_TYPE_srp) { PACKET srp_I; if (!PACKET_as_length_prefixed_1(&extension, &srp_I)) return 0; if (PACKET_contains_zero_byte(&srp_I)) return 0; /* * TODO(openssl-team): currently, we re-authenticate the user * upon resumption. Instead, we MUST ignore the login. */ if (!PACKET_strndup(&srp_I, &s->srp_ctx.login)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } #endif #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { PACKET ec_point_format_list; if (!PACKET_as_length_prefixed_1(&extension, &ec_point_format_list) || PACKET_remaining(&ec_point_format_list) == 0) { return 0; } if (!s->hit) { if (!PACKET_memdup(&ec_point_format_list, &s->session->tlsext_ecpointformatlist, &s->session->tlsext_ecpointformatlist_length)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } } else if (type == TLSEXT_TYPE_elliptic_curves) { PACKET elliptic_curve_list; /* Each NamedCurve is 2 bytes and we must have at least 1. */ if (!PACKET_as_length_prefixed_2(&extension, &elliptic_curve_list) || PACKET_remaining(&elliptic_curve_list) == 0 || (PACKET_remaining(&elliptic_curve_list) % 2) != 0) { return 0; } if (!s->hit) { if (!PACKET_memdup(&elliptic_curve_list, &s->session->tlsext_ellipticcurvelist, &s->session->tlsext_ellipticcurvelist_length)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } } #endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, PACKET_data(&extension), PACKET_remaining(&extension), s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } } else if (type == TLSEXT_TYPE_signature_algorithms) { PACKET supported_sig_algs; if (!PACKET_as_length_prefixed_2(&extension, &supported_sig_algs) || (PACKET_remaining(&supported_sig_algs) % 2) != 0 || PACKET_remaining(&supported_sig_algs) == 0) { return 0; } if (!s->hit) { if (!tls1_save_sigalgs(s, PACKET_data(&supported_sig_algs), PACKET_remaining(&supported_sig_algs))) { return 0; } } } else if (type == TLSEXT_TYPE_status_request) { if (!PACKET_get_1(&extension, (unsigned int *)&s->tlsext_status_type)) { return 0; } #ifndef OPENSSL_NO_OCSP if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) { const unsigned char *ext_data; PACKET responder_id_list, exts; if (!PACKET_get_length_prefixed_2(&extension, &responder_id_list)) return 0; while (PACKET_remaining(&responder_id_list) > 0) { OCSP_RESPID *id; PACKET responder_id; const unsigned char *id_data; if (!PACKET_get_length_prefixed_2(&responder_id_list, &responder_id) || PACKET_remaining(&responder_id) == 0) { return 0; } if (s->tlsext_ocsp_ids == NULL && (s->tlsext_ocsp_ids = sk_OCSP_RESPID_new_null()) == NULL) { *al = SSL_AD_INTERNAL_ERROR; return 0; } id_data = PACKET_data(&responder_id); id = d2i_OCSP_RESPID(NULL, &id_data, PACKET_remaining(&responder_id)); if (id == NULL) return 0; if (id_data != PACKET_end(&responder_id)) { OCSP_RESPID_free(id); return 0; } if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) { OCSP_RESPID_free(id); *al = SSL_AD_INTERNAL_ERROR; return 0; } } /* Read in request_extensions */ if (!PACKET_as_length_prefixed_2(&extension, &exts)) return 0; if (PACKET_remaining(&exts) > 0) { ext_data = PACKET_data(&exts); sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free); s->tlsext_ocsp_exts = d2i_X509_EXTENSIONS(NULL, &ext_data, PACKET_remaining(&exts)); if (s->tlsext_ocsp_exts == NULL || ext_data != PACKET_end(&exts)) { return 0; } } } else #endif { /* * We don't know what to do with any other type so ignore it. */ s->tlsext_status_type = -1; } } #ifndef OPENSSL_NO_HEARTBEATS else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_heartbeat) { unsigned int hbtype; if (!PACKET_get_1(&extension, &hbtype) || PACKET_remaining(&extension)) { *al = SSL_AD_DECODE_ERROR; return 0; } switch (hbtype) { case 0x01: /* Client allows us to send HB requests */ s->tlsext_heartbeat |= SSL_DTLSEXT_HB_ENABLED; break; case 0x02: /* Client doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_DTLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_DTLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } #endif #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { /*- * We shouldn't accept this extension on a * renegotiation. * * s->new_session will be set on renegotiation, but we * probably shouldn't rely that it couldn't be set on * the initial renegotiation too in certain cases (when * there's some other reason to disallow resuming an * earlier session -- the current code won't be doing * anything like that, but this might change). * * A valid sign that there's been a previous handshake * in this connection is if s->s3->tmp.finish_md_len > * 0. (We are talking about a check that will happen * in the Hello protocol round, well before a new * Finished message could have been computed.) */ s->s3->next_proto_neg_seen = 1; } #endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation && s->s3->tmp.finish_md_len == 0) { if (!tls1_alpn_handle_client_hello(s, &extension, al)) return 0; } /* session ticket processed earlier */ #ifndef OPENSSL_NO_SRTP else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s) && type == TLSEXT_TYPE_use_srtp) { if (ssl_parse_clienthello_use_srtp_ext(s, &extension, al)) return 0; } #endif else if (type == TLSEXT_TYPE_encrypt_then_mac) s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC; /* * Note: extended master secret extension handled in * tls_check_serverhello_tlsext_early() */ /* * If this ClientHello extension was unhandled and this is a * nonresumed connection, check whether the extension is a custom * TLS Extension (has a custom_srv_ext_record), and if so call the * callback and record the extension number so that an appropriate * ServerHello may be later returned. */ else if (!s->hit) { if (custom_ext_parse(s, 1, type, PACKET_data(&extension), PACKET_remaining(&extension), al) <= 0) return 0; } } if (PACKET_remaining(pkt) != 0) { /* tls1_check_duplicate_extensions should ensure this never happens. */ *al = SSL_AD_INTERNAL_ERROR; return 0; } ri_check: /* Need RI if renegotiating */ if (!renegotiate_seen && s->renegotiate && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } /* * This function currently has no state to clean up, so it returns directly. * If parsing fails at any point, the function returns early. * The SSL object may be left with partial data from extensions, but it must * then no longer be used, and clearing it up will free the leftovers. */ return 1; } int ssl_parse_clienthello_tlsext(SSL *s, PACKET *pkt) { int al = -1; custom_ext_init(&s->cert->srv_ext); if (ssl_scan_clienthello_tlsext(s, pkt, &al) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } if (ssl_check_clienthello_tlsext_early(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT); return 0; } return 1; } #ifndef OPENSSL_NO_NEXTPROTONEG /* * ssl_next_proto_validate validates a Next Protocol Negotiation block. No * elements of zero length are allowed and the set of elements must exactly * fill the length of the block. */ static char ssl_next_proto_validate(PACKET *pkt) { PACKET tmp_protocol; while (PACKET_remaining(pkt)) { if (!PACKET_get_length_prefixed_1(pkt, &tmp_protocol) || PACKET_remaining(&tmp_protocol) == 0) return 0; } return 1; } #endif static int ssl_scan_serverhello_tlsext(SSL *s, PACKET *pkt, int *al) { unsigned int length, type, size; int tlsext_servername = 0; int renegotiate_seen = 0; #ifndef OPENSSL_NO_NEXTPROTONEG s->s3->next_proto_neg_seen = 0; #endif s->tlsext_ticket_expected = 0; OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = NULL; #ifndef OPENSSL_NO_HEARTBEATS s->tlsext_heartbeat &= ~(SSL_DTLSEXT_HB_ENABLED | SSL_DTLSEXT_HB_DONT_SEND_REQUESTS); #endif s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC; s->s3->flags &= ~TLS1_FLAGS_RECEIVED_EXTMS; if (!PACKET_get_net_2(pkt, &length)) goto ri_check; if (PACKET_remaining(pkt) != length) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!tls1_check_duplicate_extensions(pkt)) { *al = SSL_AD_DECODE_ERROR; return 0; } while (PACKET_get_net_2(pkt, &type) && PACKET_get_net_2(pkt, &size)) { const unsigned char *data; PACKET spkt; if (!PACKET_get_sub_packet(pkt, &spkt, size) || !PACKET_peek_bytes(&spkt, &data, size)) goto ri_check; if (s->tlsext_debug_cb) s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg); if (type == TLSEXT_TYPE_renegotiate) { if (!ssl_parse_serverhello_renegotiate_ext(s, &spkt, al)) return 0; renegotiate_seen = 1; } else if (s->version == SSL3_VERSION) { } else if (type == TLSEXT_TYPE_server_name) { if (s->tlsext_hostname == NULL || size > 0) { *al = TLS1_AD_UNRECOGNIZED_NAME; return 0; } tlsext_servername = 1; } #ifndef OPENSSL_NO_EC else if (type == TLSEXT_TYPE_ec_point_formats) { unsigned int ecpointformatlist_length; if (!PACKET_get_1(&spkt, &ecpointformatlist_length) || ecpointformatlist_length != size - 1) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (!s->hit) { s->session->tlsext_ecpointformatlist_length = 0; OPENSSL_free(s->session->tlsext_ecpointformatlist); if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length; if (!PACKET_copy_bytes(&spkt, s->session->tlsext_ecpointformatlist, ecpointformatlist_length)) { *al = TLS1_AD_DECODE_ERROR; return 0; } } } #endif /* OPENSSL_NO_EC */ else if (type == TLSEXT_TYPE_session_ticket) { if (s->tls_session_ticket_ext_cb && !s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg)) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } if (!tls_use_ticket(s) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } s->tlsext_ticket_expected = 1; } else if (type == TLSEXT_TYPE_status_request) { /* * MUST be empty and only sent if we've requested a status * request message. */ if ((s->tlsext_status_type == -1) || (size > 0)) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* Set flag to expect CertificateStatus message */ s->tlsext_status_expected = 1; } #ifndef OPENSSL_NO_CT /* * Only take it if we asked for it - i.e if there is no CT validation * callback set, then a custom extension MAY be processing it, so we * need to let control continue to flow to that. */ else if (type == TLSEXT_TYPE_signed_certificate_timestamp && s->ct_validation_callback != NULL) { /* Simply copy it off for later processing */ if (s->tlsext_scts != NULL) { OPENSSL_free(s->tlsext_scts); s->tlsext_scts = NULL; } s->tlsext_scts_len = size; if (size > 0) { s->tlsext_scts = OPENSSL_malloc(size); if (s->tlsext_scts == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->tlsext_scts, data, size); } } #endif #ifndef OPENSSL_NO_NEXTPROTONEG else if (type == TLSEXT_TYPE_next_proto_neg && s->s3->tmp.finish_md_len == 0) { unsigned char *selected; unsigned char selected_len; /* We must have requested it. */ if (s->ctx->next_proto_select_cb == NULL) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /* The data must be valid */ if (!ssl_next_proto_validate(&spkt)) { *al = TLS1_AD_DECODE_ERROR; return 0; } if (s-> ctx->next_proto_select_cb(s, &selected, &selected_len, data, size, s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } s->next_proto_negotiated = OPENSSL_malloc(selected_len); if (s->next_proto_negotiated == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } memcpy(s->next_proto_negotiated, selected, selected_len); s->next_proto_negotiated_len = selected_len; s->s3->next_proto_neg_seen = 1; } #endif else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) { unsigned len; /* We must have requested it. */ if (!s->s3->alpn_sent) { *al = TLS1_AD_UNSUPPORTED_EXTENSION; return 0; } /*- * The extension data consists of: * uint16 list_length * uint8 proto_length; * uint8 proto[proto_length]; */ if (!PACKET_get_net_2(&spkt, &len) || PACKET_remaining(&spkt) != len || !PACKET_get_1(&spkt, &len) || PACKET_remaining(&spkt) != len) { *al = TLS1_AD_DECODE_ERROR; return 0; } OPENSSL_free(s->s3->alpn_selected); s->s3->alpn_selected = OPENSSL_malloc(len); if (s->s3->alpn_selected == NULL) { *al = TLS1_AD_INTERNAL_ERROR; return 0; } if (!PACKET_copy_bytes(&spkt, s->s3->alpn_selected, len)) { *al = TLS1_AD_DECODE_ERROR; return 0; } s->s3->alpn_selected_len = len; } #ifndef OPENSSL_NO_HEARTBEATS else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_heartbeat) { unsigned int hbtype; if (!PACKET_get_1(&spkt, &hbtype)) { *al = SSL_AD_DECODE_ERROR; return 0; } switch (hbtype) { case 0x01: /* Server allows us to send HB requests */ s->tlsext_heartbeat |= SSL_DTLSEXT_HB_ENABLED; break; case 0x02: /* Server doesn't accept HB requests */ s->tlsext_heartbeat |= SSL_DTLSEXT_HB_ENABLED; s->tlsext_heartbeat |= SSL_DTLSEXT_HB_DONT_SEND_REQUESTS; break; default: *al = SSL_AD_ILLEGAL_PARAMETER; return 0; } } #endif #ifndef OPENSSL_NO_SRTP else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) { if (ssl_parse_serverhello_use_srtp_ext(s, &spkt, al)) return 0; } #endif else if (type == TLSEXT_TYPE_encrypt_then_mac) { /* Ignore if inappropriate ciphersuite */ if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4) s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC; } else if (type == TLSEXT_TYPE_extended_master_secret) { s->s3->flags |= TLS1_FLAGS_RECEIVED_EXTMS; if (!s->hit) s->session->flags |= SSL_SESS_FLAG_EXTMS; } /* * If this extension type was not otherwise handled, but matches a * custom_cli_ext_record, then send it to the c callback */ else if (custom_ext_parse(s, 0, type, data, size, al) <= 0) return 0; } if (PACKET_remaining(pkt) != 0) { *al = SSL_AD_DECODE_ERROR; return 0; } if (!s->hit && tlsext_servername == 1) { if (s->tlsext_hostname) { if (s->session->tlsext_hostname == NULL) { s->session->tlsext_hostname = OPENSSL_strdup(s->tlsext_hostname); if (!s->session->tlsext_hostname) { *al = SSL_AD_UNRECOGNIZED_NAME; return 0; } } else { *al = SSL_AD_DECODE_ERROR; return 0; } } } ri_check: /* * Determine if we need to see RI. Strictly speaking if we want to avoid * an attack we should *always* see RI even on initial server hello * because the client doesn't see any renegotiation during an attack. * However this would mean we could not connect to any server which * doesn't support RI so for the immediate future tolerate RI absence */ if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT, SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED); return 0; } if (s->hit) { /* * Check extended master secret extension is consistent with * original session. */ if (!(s->s3->flags & TLS1_FLAGS_RECEIVED_EXTMS) != !(s->session->flags & SSL_SESS_FLAG_EXTMS)) { *al = SSL_AD_HANDSHAKE_FAILURE; SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT, SSL_R_INCONSISTENT_EXTMS); return 0; } } return 1; } int ssl_prepare_clienthello_tlsext(SSL *s) { s->s3->alpn_sent = 0; return 1; } int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; } static int ssl_check_clienthello_tlsext_early(SSL *s) { int ret = SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* * The handling of the ECPointFormats extension is done elsewhere, namely * in ssl3_choose_cipher in s3_lib.c. */ /* * The handling of the EllipticCurves extension is done elsewhere, namely * in ssl3_choose_cipher in s3_lib.c. */ #endif if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s-> initial_ctx->tlsext_servername_arg); switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done = 0; default: return 1; } } /* Initialise digests to default values */ void ssl_set_default_md(SSL *s) { const EVP_MD **pmd = s->s3->tmp.md; #ifndef OPENSSL_NO_DSA pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX); #endif #ifndef OPENSSL_NO_RSA if (SSL_USE_SIGALGS(s)) pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX); else pmd[SSL_PKEY_RSA_SIGN] = ssl_md(SSL_MD_MD5_SHA1_IDX); pmd[SSL_PKEY_RSA_ENC] = pmd[SSL_PKEY_RSA_SIGN]; #endif #ifndef OPENSSL_NO_EC pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX); #endif #ifndef OPENSSL_NO_GOST pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX); pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX); pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX); #endif } int tls1_set_server_sigalgs(SSL *s) { int al; size_t i; /* Clear any shared signature algorithms */ OPENSSL_free(s->cert->shared_sigalgs); s->cert->shared_sigalgs = NULL; s->cert->shared_sigalgslen = 0; /* Clear certificate digests and validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) { s->s3->tmp.md[i] = NULL; s->s3->tmp.valid_flags[i] = 0; } /* If sigalgs received process it. */ if (s->s3->tmp.peer_sigalgs) { if (!tls1_process_sigalgs(s)) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE); al = SSL_AD_INTERNAL_ERROR; goto err; } /* Fatal error is no shared signature algorithms */ if (!s->cert->shared_sigalgs) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); al = SSL_AD_ILLEGAL_PARAMETER; goto err; } } else { ssl_set_default_md(s); } return 1; err: ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } /* * Upon success, returns 1. * Upon failure, returns 0 and sets |al| to the appropriate fatal alert. */ int ssl_check_clienthello_tlsext_late(SSL *s, int *al) { s->tlsext_status_expected = 0; /* * If status request then ask callback what to do. Note: this must be * called after servername callbacks in case the certificate has changed, * and must be called after the cipher has been chosen because this may * influence which certificate is sent */ if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) { int ret; CERT_PKEY *certpkey; certpkey = ssl_get_server_send_pkey(s); /* If no certificate can't return certificate status */ if (certpkey != NULL) { /* * Set current certificate to one we will use so SSL_get_certificate * et al can pick it up. */ s->cert->key = certpkey; ret = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg); switch (ret) { /* We don't want to send a status request response */ case SSL_TLSEXT_ERR_NOACK: s->tlsext_status_expected = 0; break; /* status request response should be sent */ case SSL_TLSEXT_ERR_OK: if (s->tlsext_ocsp_resp) s->tlsext_status_expected = 1; break; /* something bad happened */ case SSL_TLSEXT_ERR_ALERT_FATAL: default: *al = SSL_AD_INTERNAL_ERROR; return 0; } } } if (!tls1_alpn_handle_client_hello_late(s, al)) { return 0; } return 1; } int ssl_check_serverhello_tlsext(SSL *s) { int ret = SSL_TLSEXT_ERR_NOACK; int al = SSL_AD_UNRECOGNIZED_NAME; #ifndef OPENSSL_NO_EC /* * If we are client and using an elliptic curve cryptography cipher * suite, then if server returns an EC point formats lists extension it * must contain uncompressed. */ unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey; unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth; if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) && (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) && ((alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA))) { /* we are using an ECC cipher */ size_t i; unsigned char *list; int found_uncompressed = 0; list = s->session->tlsext_ecpointformatlist; for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) { if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) { found_uncompressed = 1; break; } } if (!found_uncompressed) { SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT, SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST); return -1; } } ret = SSL_TLSEXT_ERR_OK; #endif /* OPENSSL_NO_EC */ if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg); else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0) ret = s->initial_ctx->tlsext_servername_callback(s, &al, s-> initial_ctx->tlsext_servername_arg); /* * Ensure we get sensible values passed to tlsext_status_cb in the event * that we don't receive a status message */ OPENSSL_free(s->tlsext_ocsp_resp); s->tlsext_ocsp_resp = NULL; s->tlsext_ocsp_resplen = -1; switch (ret) { case SSL_TLSEXT_ERR_ALERT_FATAL: ssl3_send_alert(s, SSL3_AL_FATAL, al); return -1; case SSL_TLSEXT_ERR_ALERT_WARNING: ssl3_send_alert(s, SSL3_AL_WARNING, al); return 1; case SSL_TLSEXT_ERR_NOACK: s->servername_done = 0; default: return 1; } } int ssl_parse_serverhello_tlsext(SSL *s, PACKET *pkt) { int al = -1; if (s->version < SSL3_VERSION) return 1; if (ssl_scan_serverhello_tlsext(s, pkt, &al) <= 0) { ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } if (ssl_check_serverhello_tlsext(s) <= 0) { SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT); return 0; } return 1; } /*- * Since the server cache lookup is done early on in the processing of the * ClientHello and other operations depend on the result some extensions * need to be handled at the same time. * * Two extensions are currently handled, session ticket and extended master * secret. * * session_id: ClientHello session ID. * ext: ClientHello extensions (including length prefix) * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * If s->tls_session_secret_cb is set then we are expecting a pre-shared key * ciphersuite, in which case we have no use for session tickets and one will * never be decrypted, nor will s->tlsext_ticket_expected be set to 1. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 0: no ticket was found (or was ignored, based on settings). * 1: a zero length extension was found, indicating that the client supports * session tickets but doesn't currently have one to offer. * 2: either s->tls_session_secret_cb was set, or a ticket was offered but * couldn't be decrypted because of a non-fatal error. * 3: a ticket was successfully decrypted and *ret was set. * * Side effects: * Sets s->tlsext_ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket. * Otherwise, s->tlsext_ticket_expected is set to 0. * * For extended master secret flag is set if the extension is present. * */ int tls_check_serverhello_tlsext_early(SSL *s, const PACKET *ext, const PACKET *session_id, SSL_SESSION **ret) { unsigned int i; PACKET local_ext = *ext; int retv = -1; int have_ticket = 0; int use_ticket = tls_use_ticket(s); *ret = NULL; s->tlsext_ticket_expected = 0; s->s3->flags &= ~TLS1_FLAGS_RECEIVED_EXTMS; /* * If tickets disabled behave as if no ticket present to permit stateful * resumption. */ if ((s->version <= SSL3_VERSION)) return 0; if (!PACKET_get_net_2(&local_ext, &i)) { retv = 0; goto end; } while (PACKET_remaining(&local_ext) >= 4) { unsigned int type, size; if (!PACKET_get_net_2(&local_ext, &type) || !PACKET_get_net_2(&local_ext, &size)) { /* Shouldn't ever happen */ retv = -1; goto end; } if (PACKET_remaining(&local_ext) < size) { retv = 0; goto end; } if (type == TLSEXT_TYPE_session_ticket && use_ticket) { int r; const unsigned char *etick; /* Duplicate extension */ if (have_ticket != 0) { retv = -1; goto end; } have_ticket = 1; if (size == 0) { /* * The client will accept a ticket but doesn't currently have * one. */ s->tlsext_ticket_expected = 1; retv = 1; continue; } if (s->tls_session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger * abbreviated handshake based on external mechanism to * calculate the master secret later. */ retv = 2; continue; } if (!PACKET_get_bytes(&local_ext, &etick, size)) { /* Shouldn't ever happen */ retv = -1; goto end; } r = tls_decrypt_ticket(s, etick, size, PACKET_data(session_id), PACKET_remaining(session_id), ret); switch (r) { case 2: /* ticket couldn't be decrypted */ s->tlsext_ticket_expected = 1; retv = 2; break; case 3: /* ticket was decrypted */ retv = r; break; case 4: /* ticket decrypted but need to renew */ s->tlsext_ticket_expected = 1; retv = 3; break; default: /* fatal error */ retv = -1; break; } continue; } else { if (type == TLSEXT_TYPE_extended_master_secret) s->s3->flags |= TLS1_FLAGS_RECEIVED_EXTMS; if (!PACKET_forward(&local_ext, size)) { retv = -1; goto end; } } } if (have_ticket == 0) retv = 0; end: return retv; } /*- * tls_decrypt_ticket attempts to decrypt a session ticket. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extension. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * Returns: * -2: fatal error, malloc failure. * -1: fatal error, either from parsing or decrypting the ticket. * 2: the ticket couldn't be decrypted. * 3: a ticket was successfully decrypted and *psess was set. * 4: same as 3, but the ticket needs to be renewed. */ static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen, const unsigned char *sess_id, int sesslen, SSL_SESSION **psess) { SSL_SESSION *sess; unsigned char *sdec; const unsigned char *p; int slen, mlen, renew_ticket = 0, ret = -1; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX *hctx = NULL; EVP_CIPHER_CTX *ctx; SSL_CTX *tctx = s->initial_ctx; /* Need at least keyname + iv + some encrypted data */ if (eticklen < 48) return 2; /* Initialize session ticket encryption and HMAC contexts */ hctx = HMAC_CTX_new(); if (hctx == NULL) return -2; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { ret = -2; goto err; } if (tctx->tlsext_ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, ctx, hctx, 0); if (rv < 0) goto err; if (rv == 0) { ret = 2; goto err; } if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->tlsext_tick_key_name, sizeof(tctx->tlsext_tick_key_name)) != 0) { ret = 2; goto err; } if (HMAC_Init_ex(hctx, tctx->tlsext_tick_hmac_key, sizeof(tctx->tlsext_tick_hmac_key), EVP_sha256(), NULL) <= 0 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, tctx->tlsext_tick_aes_key, etick + sizeof(tctx->tlsext_tick_key_name)) <= 0) { goto err; } } /* * Attempt to process session ticket, first conduct sanity and integrity * checks on ticket. */ mlen = HMAC_size(hctx); if (mlen < 0) { goto err; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ if (HMAC_Update(hctx, etick, eticklen) <= 0 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { goto err; } HMAC_CTX_free(hctx); if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { EVP_CIPHER_CTX_free(ctx); return 2; } /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + 16 + EVP_CIPHER_CTX_iv_length(ctx); eticklen -= 16 + EVP_CIPHER_CTX_iv_length(ctx); sdec = OPENSSL_malloc(eticklen); if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, eticklen) <= 0) { EVP_CIPHER_CTX_free(ctx); OPENSSL_free(sdec); return -1; } if (EVP_DecryptFinal(ctx, sdec + slen, &mlen) <= 0) { EVP_CIPHER_CTX_free(ctx); OPENSSL_free(sdec); return 2; } slen += mlen; EVP_CIPHER_CTX_free(ctx); ctx = NULL; p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); OPENSSL_free(sdec); if (sess) { /* * The session ID, if non-empty, is used by some clients to detect * that the ticket has been accepted. So we copy it to the session * structure. If it is empty set length to zero as required by * standard. */ if (sesslen) memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; *psess = sess; if (renew_ticket) return 4; else return 3; } ERR_clear_error(); /* * For session parse failure, indicate that we need to send a new ticket. */ return 2; err: EVP_CIPHER_CTX_free(ctx); HMAC_CTX_free(hctx); return ret; } /* Tables to translate from NIDs to TLS v1.2 ids */ typedef struct { int nid; int id; } tls12_lookup; static const tls12_lookup tls12_md[] = { {NID_md5, TLSEXT_hash_md5}, {NID_sha1, TLSEXT_hash_sha1}, {NID_sha224, TLSEXT_hash_sha224}, {NID_sha256, TLSEXT_hash_sha256}, {NID_sha384, TLSEXT_hash_sha384}, {NID_sha512, TLSEXT_hash_sha512}, {NID_id_GostR3411_94, TLSEXT_hash_gostr3411}, {NID_id_GostR3411_2012_256, TLSEXT_hash_gostr34112012_256}, {NID_id_GostR3411_2012_512, TLSEXT_hash_gostr34112012_512}, }; static const tls12_lookup tls12_sig[] = { {EVP_PKEY_RSA, TLSEXT_signature_rsa}, {EVP_PKEY_DSA, TLSEXT_signature_dsa}, {EVP_PKEY_EC, TLSEXT_signature_ecdsa}, {NID_id_GostR3410_2001, TLSEXT_signature_gostr34102001}, {NID_id_GostR3410_2012_256, TLSEXT_signature_gostr34102012_256}, {NID_id_GostR3410_2012_512, TLSEXT_signature_gostr34102012_512} }; static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if (table[i].nid == nid) return table[i].id; } return -1; } static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen) { size_t i; for (i = 0; i < tlen; i++) { if ((table[i].id) == id) return table[i].nid; } return NID_undef; } int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md) { int sig_id, md_id; if (!md) return 0; md_id = tls12_find_id(EVP_MD_type(md), tls12_md, OSSL_NELEM(tls12_md)); if (md_id == -1) return 0; sig_id = tls12_get_sigid(pk); if (sig_id == -1) return 0; p[0] = (unsigned char)md_id; p[1] = (unsigned char)sig_id; return 1; } int tls12_get_sigid(const EVP_PKEY *pk) { return tls12_find_id(EVP_PKEY_id(pk), tls12_sig, OSSL_NELEM(tls12_sig)); } typedef struct { int nid; int secbits; int md_idx; unsigned char tlsext_hash; } tls12_hash_info; static const tls12_hash_info tls12_md_info[] = { {NID_md5, 64, SSL_MD_MD5_IDX, TLSEXT_hash_md5}, {NID_sha1, 80, SSL_MD_SHA1_IDX, TLSEXT_hash_sha1}, {NID_sha224, 112, SSL_MD_SHA224_IDX, TLSEXT_hash_sha224}, {NID_sha256, 128, SSL_MD_SHA256_IDX, TLSEXT_hash_sha256}, {NID_sha384, 192, SSL_MD_SHA384_IDX, TLSEXT_hash_sha384}, {NID_sha512, 256, SSL_MD_SHA512_IDX, TLSEXT_hash_sha512}, {NID_id_GostR3411_94, 128, SSL_MD_GOST94_IDX, TLSEXT_hash_gostr3411}, {NID_id_GostR3411_2012_256, 128, SSL_MD_GOST12_256_IDX, TLSEXT_hash_gostr34112012_256}, {NID_id_GostR3411_2012_512, 256, SSL_MD_GOST12_512_IDX, TLSEXT_hash_gostr34112012_512}, }; static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg) { unsigned int i; if (hash_alg == 0) return NULL; for (i=0; i < OSSL_NELEM(tls12_md_info); i++) { if (tls12_md_info[i].tlsext_hash == hash_alg) return tls12_md_info + i; } return NULL; } const EVP_MD *tls12_get_hash(unsigned char hash_alg) { const tls12_hash_info *inf; if (hash_alg == TLSEXT_hash_md5 && FIPS_mode()) return NULL; inf = tls12_get_hash_info(hash_alg); if (!inf) return NULL; return ssl_md(inf->md_idx); } static int tls12_get_pkey_idx(unsigned char sig_alg) { switch (sig_alg) { #ifndef OPENSSL_NO_RSA case TLSEXT_signature_rsa: return SSL_PKEY_RSA_SIGN; #endif #ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: return SSL_PKEY_DSA_SIGN; #endif #ifndef OPENSSL_NO_EC case TLSEXT_signature_ecdsa: return SSL_PKEY_ECC; #endif # ifndef OPENSSL_NO_GOST case TLSEXT_signature_gostr34102001: return SSL_PKEY_GOST01; case TLSEXT_signature_gostr34102012_256: return SSL_PKEY_GOST12_256; case TLSEXT_signature_gostr34102012_512: return SSL_PKEY_GOST12_512; # endif } return -1; } /* Convert TLS 1.2 signature algorithm extension values into NIDs */ static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid, int *psignhash_nid, const unsigned char *data) { int sign_nid = NID_undef, hash_nid = NID_undef; if (!phash_nid && !psign_nid && !psignhash_nid) return; if (phash_nid || psignhash_nid) { hash_nid = tls12_find_nid(data[0], tls12_md, OSSL_NELEM(tls12_md)); if (phash_nid) *phash_nid = hash_nid; } if (psign_nid || psignhash_nid) { sign_nid = tls12_find_nid(data[1], tls12_sig, OSSL_NELEM(tls12_sig)); if (psign_nid) *psign_nid = sign_nid; } if (psignhash_nid) { if (sign_nid == NID_undef || hash_nid == NID_undef || OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid) <= 0) *psignhash_nid = NID_undef; } } /* Check to see if a signature algorithm is allowed */ static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp) { /* See if we have an entry in the hash table and it is enabled */ const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]); if (hinf == NULL || ssl_md(hinf->md_idx) == NULL) return 0; /* See if public key algorithm allowed */ if (tls12_get_pkey_idx(ptmp[1]) == -1) return 0; /* Finally see if security callback allows it */ return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp); } /* * Get a mask of disabled public key algorithms based on supported signature * algorithms. For example if no signature algorithm supports RSA then RSA is * disabled. */ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) { const unsigned char *sigalgs; size_t i, sigalgslen; int have_rsa = 0, have_dsa = 0, have_ecdsa = 0; /* * Now go through all signature algorithms seeing if we support any for * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep * down calls to security callback only check if we have to. */ sigalgslen = tls12_get_psigalgs(s, &sigalgs); for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) { switch (sigalgs[1]) { #ifndef OPENSSL_NO_RSA case TLSEXT_signature_rsa: if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs)) have_rsa = 1; break; #endif #ifndef OPENSSL_NO_DSA case TLSEXT_signature_dsa: if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs)) have_dsa = 1; break; #endif #ifndef OPENSSL_NO_EC case TLSEXT_signature_ecdsa: if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs)) have_ecdsa = 1; break; #endif } } if (!have_rsa) *pmask_a |= SSL_aRSA; if (!have_dsa) *pmask_a |= SSL_aDSS; if (!have_ecdsa) *pmask_a |= SSL_aECDSA; } size_t tls12_copy_sigalgs(SSL *s, unsigned char *out, const unsigned char *psig, size_t psiglen) { unsigned char *tmpout = out; size_t i; for (i = 0; i < psiglen; i += 2, psig += 2) { if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig)) { *tmpout++ = psig[0]; *tmpout++ = psig[1]; } } return tmpout - out; } /* Given preference and allowed sigalgs set shared sigalgs */ static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig, const unsigned char *pref, size_t preflen, const unsigned char *allow, size_t allowlen) { const unsigned char *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) { /* Skip disabled hashes or signature algorithms */ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp)) continue; for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) { if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) { nmatch++; if (shsig) { shsig->rhash = ptmp[0]; shsig->rsign = ptmp[1]; tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid, &shsig->signandhash_nid, ptmp); shsig++; } break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const unsigned char *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; TLS_SIGALGS *salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); OPENSSL_free(c->shared_sigalgs); c->shared_sigalgs = NULL; c->shared_sigalgslen = 0; /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, &conf); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = s->s3->tmp.peer_sigalgs; allowlen = s->s3->tmp.peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = s->s3->tmp.peer_sigalgs; preflen = s->s3->tmp.peer_sigalgslen; } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS)); if (salgs == NULL) return 0; nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; } c->shared_sigalgs = salgs; c->shared_sigalgslen = nmatch; return 1; } /* Set preferred digest for each key type */ int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize) { CERT *c = s->cert; /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Should never happen */ if (!c) return 0; OPENSSL_free(s->s3->tmp.peer_sigalgs); s->s3->tmp.peer_sigalgs = OPENSSL_malloc(dsize); if (s->s3->tmp.peer_sigalgs == NULL) return 0; s->s3->tmp.peer_sigalgslen = dsize; memcpy(s->s3->tmp.peer_sigalgs, data, dsize); return 1; } int tls1_process_sigalgs(SSL *s) { int idx; size_t i; const EVP_MD *md; const EVP_MD **pmd = s->s3->tmp.md; uint32_t *pvalid = s->s3->tmp.valid_flags; CERT *c = s->cert; TLS_SIGALGS *sigptr; if (!tls1_set_shared_sigalgs(s)) return 0; for (i = 0, sigptr = c->shared_sigalgs; i < c->shared_sigalgslen; i++, sigptr++) { idx = tls12_get_pkey_idx(sigptr->rsign); if (idx > 0 && pmd[idx] == NULL) { md = tls12_get_hash(sigptr->rhash); pmd[idx] = md; pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN; if (idx == SSL_PKEY_RSA_SIGN) { pvalid[SSL_PKEY_RSA_ENC] = CERT_PKEY_EXPLICIT_SIGN; pmd[SSL_PKEY_RSA_ENC] = md; } } } /* * In strict mode leave unset digests as NULL to indicate we can't use * the certificate for signing. */ if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { /* * Set any remaining keys to default values. NOTE: if alg is not * supported it stays as NULL. */ #ifndef OPENSSL_NO_DSA if (pmd[SSL_PKEY_DSA_SIGN] == NULL) pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1(); #endif #ifndef OPENSSL_NO_RSA if (pmd[SSL_PKEY_RSA_SIGN] == NULL) { pmd[SSL_PKEY_RSA_SIGN] = EVP_sha1(); pmd[SSL_PKEY_RSA_ENC] = EVP_sha1(); } #endif #ifndef OPENSSL_NO_EC if (pmd[SSL_PKEY_ECC] == NULL) pmd[SSL_PKEY_ECC] = EVP_sha1(); #endif # ifndef OPENSSL_NO_GOST if (pmd[SSL_PKEY_GOST01] == NULL) pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94); if (pmd[SSL_PKEY_GOST12_256] == NULL) pmd[SSL_PKEY_GOST12_256] = EVP_get_digestbynid(NID_id_GostR3411_2012_256); if (pmd[SSL_PKEY_GOST12_512] == NULL) pmd[SSL_PKEY_GOST12_512] = EVP_get_digestbynid(NID_id_GostR3411_2012_512); # endif } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const unsigned char *psig = s->s3->tmp.peer_sigalgs; if (psig == NULL) return 0; if (idx >= 0) { idx <<= 1; if (idx >= (int)s->s3->tmp.peer_sigalgslen) return 0; psig += idx; if (rhash) *rhash = psig[0]; if (rsig) *rsig = psig[1]; tls1_lookup_sigalg(phash, psign, psignhash, psig); } return s->s3->tmp.peer_sigalgslen / 2; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs; if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) return 0; shsigalgs += idx; if (phash) *phash = shsigalgs->hash_nid; if (psign) *psign = shsigalgs->sign_nid; if (psignhash) *psignhash = shsigalgs->signandhash_nid; if (rsig) *rsig = shsigalgs->rsign; if (rhash) *rhash = shsigalgs->rhash; return s->cert->shared_sigalgslen; } #define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2) typedef struct { size_t sigalgcnt; int sigalgs[MAX_SIGALGLEN]; } sig_cb_st; static void get_sigorhash(int *psig, int *phash, const char *str) { if (strcmp(str, "RSA") == 0) { *psig = EVP_PKEY_RSA; } else if (strcmp(str, "DSA") == 0) { *psig = EVP_PKEY_DSA; } else if (strcmp(str, "ECDSA") == 0) { *psig = EVP_PKEY_EC; } else { *phash = OBJ_sn2nid(str); if (*phash == NID_undef) *phash = OBJ_ln2nid(str); } } static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; char etmp[20], *p; int sig_alg = NID_undef, hash_alg = NID_undef; if (elem == NULL) return 0; if (sarg->sigalgcnt == MAX_SIGALGLEN) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); if (!p) return 0; *p = 0; p++; if (!*p) return 0; get_sigorhash(&sig_alg, &hash_alg, etmp); get_sigorhash(&sig_alg, &hash_alg, p); if (sig_alg == NID_undef || hash_alg == NID_undef) return 0; for (i = 0; i < sarg->sigalgcnt; i += 2) { if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) return 0; } sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; return 1; } /* * Set supported signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { unsigned char *sigalgs, *sptr; int rhash, rsign; size_t i; if (salglen & 1) return 0; sigalgs = OPENSSL_malloc(salglen); if (sigalgs == NULL) return 0; for (i = 0, sptr = sigalgs; i < salglen; i += 2) { rhash = tls12_find_id(*psig_nids++, tls12_md, OSSL_NELEM(tls12_md)); rsign = tls12_find_id(*psig_nids++, tls12_sig, OSSL_NELEM(tls12_sig)); if (rhash == -1 || rsign == -1) goto err; *sptr++ = rhash; *sptr++ = rsign; } if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) { int sig_nid; size_t i; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; for (i = 0; i < c->shared_sigalgslen; i++) if (sig_nid == c->shared_sigalgs[i].signandhash_nid) return 1; return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* * Check certificate chain is consistent with TLS extensions and is usable by * server. This servers two purposes: it allows users to check chains before * passing them to the server and it allows the server to check chains before * attempting to use them. */ /* Flags which need to be set for a certificate when stict mode not set */ #define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ #define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; uint32_t *pvalid; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = cpk - c->pkeys; } else cpk = c->pkeys + idx; pvalid = s->s3->tmp.valid_flags + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; } else { if (!x || !pk) return 0; idx = ssl_cert_type(x, pk); if (idx == -1) return 0; pvalid = s->s3->tmp.valid_flags + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok == X509_V_OK) rv |= CERT_PKEY_SUITEB; else if (!check_flags) goto end; } /* * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; unsigned char rsign = 0; if (s->s3->tmp.peer_sigalgs) default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ else { switch (idx) { case SSL_PKEY_RSA_ENC: case SSL_PKEY_RSA_SIGN: rsign = TLSEXT_signature_rsa; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: rsign = TLSEXT_signature_dsa; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = TLSEXT_signature_ecdsa; default_nid = NID_ecdsa_with_SHA1; break; case SSL_PKEY_GOST01: rsign = TLSEXT_signature_gostr34102001; default_nid = NID_id_GostR3411_94_with_GostR3410_2001; break; case SSL_PKEY_GOST12_256: rsign = TLSEXT_signature_gostr34102012_256; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; break; case SSL_PKEY_GOST12_512: rsign = TLSEXT_signature_gostr34102012_512; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; break; default: default_nid = -1; break; } } /* * If peer sent no signature algorithms extension and we have set * preferred signature algorithms check we support sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const unsigned char *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) { if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (!tls1_check_sig_alg(c, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if (check_flags) rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, check_flags ? 1 : 2)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; int check_type = 0; switch (EVP_PKEY_id(pk)) { case EVP_PKEY_RSA: check_type = TLS_CT_RSA_SIGN; break; case EVP_PKEY_DSA: check_type = TLS_CT_DSS_SIGN; break; case EVP_PKEY_EC: check_type = TLS_CT_ECDSA_SIGN; break; } if (check_type) { const unsigned char *ctypes; int ctypelen; if (c->ctypes) { ctypes = c->ctypes; ctypelen = (int)c->ctype_num; } else { ctypes = (unsigned char *)s->s3->tmp.ctype; ctypelen = s->s3->tmp.ctype_num; } for (i = 0; i < ctypelen; i++) { if (ctypes[i] == check_type) { rv |= CERT_PKEY_CERT_TYPE; break; } } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else rv |= CERT_PKEY_CERT_TYPE; ca_dn = s->s3->tmp.ca_names; if (!sk_X509_NAME_num(ca_dn)) rv |= CERT_PKEY_ISSUER_NAME; if (!(rv & CERT_PKEY_ISSUER_NAME)) { if (ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; } if (!(rv & CERT_PKEY_ISSUER_NAME)) { for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } } if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) { if (*pvalid & CERT_PKEY_EXPLICIT_SIGN) rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; else if (s->s3->tmp.md[idx] != NULL) rv |= CERT_PKEY_SIGN; } else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; /* * When checking a CERT_PKEY structure all flags are irrelevant if the * chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) *pvalid = rv; else { /* Preserve explicit sign flag, clear rest */ *pvalid &= CERT_PKEY_EXPLICIT_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); } /* User level utiity function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } #ifndef OPENSSL_NO_DH DH *ssl_get_auto_dh(SSL *s) { int dh_secbits = 80; if (s->cert->dh_tmp_auto == 2) return DH_get_1024_160(); if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { if (s->s3->tmp.new_cipher->strength_bits == 256) dh_secbits = 128; else dh_secbits = 80; } else { CERT_PKEY *cpk = ssl_get_server_send_pkey(s); dh_secbits = EVP_PKEY_security_bits(cpk->privatekey); } if (dh_secbits >= 128) { DH *dhp = DH_new(); BIGNUM *p, *g; if (dhp == NULL) return NULL; g = BN_new(); if (g != NULL) BN_set_word(g, 2); if (dh_secbits >= 192) p = BN_get_rfc3526_prime_8192(NULL); else p = BN_get_rfc3526_prime_3072(NULL); if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { DH_free(dhp); BN_free(p); BN_free(g); return NULL; } return dhp; } if (dh_secbits >= 112) return DH_get_2048_224(); return DH_get_1024_160(); } #endif static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) { int secbits = -1; EVP_PKEY *pkey = X509_get0_pubkey(x); if (pkey) { /* * If no parameters this will return -1 and fail using the default * security callback for any non-zero security level. This will * reject keys which omit parameters but this only affects DSA and * omission of parameters is never (?) done in practice. */ secbits = EVP_PKEY_security_bits(pkey); } if (s) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) { /* Lookup signature algorithm digest */ int secbits = -1, md_nid = NID_undef, sig_nid; /* Don't check signature if self signed */ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) return 1; sig_nid = X509_get_signature_nid(x); if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) { const EVP_MD *md; if (md_nid && (md = EVP_get_digestbynid(md_nid))) secbits = EVP_MD_size(md) * 4; } if (s) return ssl_security(s, op, secbits, md_nid, x); else return ssl_ctx_security(ctx, op, secbits, md_nid, x); } int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; if (is_ee) { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) return SSL_R_EE_KEY_TOO_SMALL; } else { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) return SSL_R_CA_KEY_TOO_SMALL; } if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) return SSL_R_CA_MD_TOO_WEAK; return 1; } /* * Check security of a chain, if sk includes the end entity certificate then * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending * one to the peer. Return values: 1 if ok otherwise error code to use */ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) { int rv, start_idx, i; if (x == NULL) { x = sk_X509_value(sk, 0); start_idx = 1; } else start_idx = 0; rv = ssl_security_cert(s, NULL, x, vfy, 1); if (rv != 1) return rv; for (i = start_idx; i < sk_X509_num(sk); i++) { x = sk_X509_value(sk, i); rv = ssl_security_cert(s, NULL, x, vfy, 0); if (rv != 1) return rv; } return 1; }