#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # On PA-7100LC this module performs ~90-50% better, less for longer # keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means # that compiler utilized xmpyu instruction to perform 32x32=64-bit # multiplication, which in turn means that "baseline" performance was # optimal in respect to instruction set capabilities. Fair comparison # with vendor compiler is problematic, because OpenSSL doesn't define # BN_LLONG [presumably] for historical reasons, which drives compiler # toward 4 times 16x16=32-bit multiplicatons [plus complementary # shifts and additions] instead. This means that you should observe # several times improvement over code generated by vendor compiler # for PA-RISC 1.1, but the "baseline" is far from optimal. The actual # improvement coefficient was never collected on PA-7100LC, or any # other 1.1 CPU, because I don't have access to such machine with # vendor compiler. But to give you a taste, PA-RISC 1.1 code path # reportedly outperformed code generated by cc +DA1.1 +O3 by factor # of ~5x on PA-8600. # # On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is # reportedly ~2x faster than vendor compiler generated code [according # to comment in pa-risc2[W].s]. Here comes a catch. Execution core of # this implementation is actually 32-bit one, in the sense that it # operates on 32-bit values. But pa-risc2[W].s operates on arrays of # 64-bit BN_LONGs... How do they interoperate then? No problem. This # module picks halves of 64-bit values in reverse order and pretends # they were 32-bit BN_LONGs. But can 32-bit core compete with "pure" # 64-bit code such as pa-risc2[W].s then? Well, the thing is that # 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do, # i.e. there is no "wider" multiplication like on most other 64-bit # platforms. This means that even being effectively 32-bit, this # implementation performs "64-bit" computational task in same amount # of arithmetic operations, most notably multiplications. It requires # more memory references, most notably to tp[num], but this doesn't # seem to exhaust memory port capacity. And indeed, dedicated PA-RISC # 2.0 code path provides virtually same performance as pa-risc2[W].s: # it's ~10% better for shortest key length and ~10% worse for longest # one. # # In case it wasn't clear. The module has two distinct code paths: # PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit # additions and 64-bit integer loads, not to mention specific # instruction scheduling. In 64-bit build naturally only 2.0 code path # is assembled. In 32-bit application context both code paths are # assembled, PA-RISC 2.0 CPU is detected at run-time and proper path # is taken automatically. Also, in 32-bit build the module imposes # couple of limitations: vector lengths has to be even and vector # addresses has to be 64-bit aligned. Normally neither is a problem: # most common key lengths are even and vectors are commonly malloc-ed, # which ensures alignment. # # Special thanks to polarhome.com for providing HP-UX account on # PA-RISC 1.1 machine, and to correspondent who chose to remain # anonymous for testing the code on PA-RISC 2.0 machine. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; $flavour = shift; $output = shift; open STDOUT,">$output"; if ($flavour =~ /64/) { $LEVEL ="2.0W"; $SIZE_T =8; $FRAME_MARKER =80; $SAVED_RP =16; $PUSH ="std"; $PUSHMA ="std,ma"; $POP ="ldd"; $POPMB ="ldd,mb"; $BN_SZ =$SIZE_T; } else { $LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0"; $SIZE_T =4; $FRAME_MARKER =48; $SAVED_RP =20; $PUSH ="stw"; $PUSHMA ="stwm"; $POP ="ldw"; $POPMB ="ldwm"; $BN_SZ =$SIZE_T; if (open CONF,"<${dir}../../opensslconf.h") { while(<CONF>) { if (m/#\s*define\s+SIXTY_FOUR_BIT/) { $BN_SZ=8; $LEVEL="2.0"; last; } } close CONF; } } $FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker # [+ argument transfer] $LOCALS=$FRAME-$FRAME_MARKER; $FRAME+=32; # local variables $tp="%r31"; $ti1="%r29"; $ti0="%r28"; $rp="%r26"; $ap="%r25"; $bp="%r24"; $np="%r23"; $n0="%r22"; # passed through stack in 32-bit $num="%r21"; # passed through stack in 32-bit $idx="%r20"; $arrsz="%r19"; $nm1="%r7"; $nm0="%r6"; $ab1="%r5"; $ab0="%r4"; $fp="%r3"; $hi1="%r2"; $hi0="%r1"; $xfer=$n0; # accommodates [-16..15] offset in fld[dw]s $fm0="%fr4"; $fti=$fm0; $fbi="%fr5L"; $fn0="%fr5R"; $fai="%fr6"; $fab0="%fr7"; $fab1="%fr8"; $fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11"; $code=<<___; .LEVEL $LEVEL .SPACE \$TEXT\$ .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY .EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR .ALIGN 64 bn_mul_mont .PROC .CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6 .ENTRY $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue $PUSHMA %r3,$FRAME(%sp) $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) ldo -$FRAME(%sp),$fp ___ $code.=<<___ if ($SIZE_T==4); ldw `-$FRAME_MARKER-4`($fp),$n0 ldw `-$FRAME_MARKER-8`($fp),$num nop nop ; alignment ___ $code.=<<___ if ($BN_SZ==4); comiclr,<= 6,$num,%r0 ; are vectors long enough? b L\$abort ldi 0,%r28 ; signal "unhandled" add,ev %r0,$num,$num ; is $num even? b L\$abort nop or $ap,$np,$ti1 extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned? b L\$abort nop nop ; alignment nop fldws 0($n0),${fn0} fldws,ma 4($bp),${fbi} ; bp[0] ___ $code.=<<___ if ($BN_SZ==8); comib,> 3,$num,L\$abort ; are vectors long enough? ldi 0,%r28 ; signal "unhandled" addl $num,$num,$num ; I operate on 32-bit values fldws 4($n0),${fn0} ; only low part of n0 fldws 4($bp),${fbi} ; bp[0] in flipped word order ___ $code.=<<___; fldds 0($ap),${fai} ; ap[0,1] fldds 0($np),${fni} ; np[0,1] sh2addl $num,%r0,$arrsz ldi 31,$hi0 ldo 36($arrsz),$hi1 ; space for tp[num+1] andcm $hi1,$hi0,$hi1 ; align addl $hi1,%sp,%sp $PUSH $fp,-$SIZE_T(%sp) ldo `$LOCALS+16`($fp),$xfer ldo `$LOCALS+32+4`($fp),$tp xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0] xmpyu ${fn0},${fab0}R,${fm0} addl $arrsz,$ap,$ap ; point at the end addl $arrsz,$np,$np subi 0,$arrsz,$idx ; j=0 ldo 8($idx),$idx ; j++++ xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) fstds ${fab1},0($xfer) fstds ${fnm1},8($xfer) flddx $idx($ap),${fai} ; ap[2,3] flddx $idx($np),${fni} ; np[2,3] ___ $code.=<<___ if ($BN_SZ==4); mtctl $hi0,%cr11 ; $hi0 still holds 31 extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0 b L\$parisc11 nop ___ $code.=<<___; # PA-RISC 2.0 code-path xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) extrd,u $ab0,31,32,$hi0 extrd,u $ab0,63,32,$ab0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ addl $ab0,$nm0,$nm0 ; low part is discarded extrd,u $nm0,31,32,$hi1 L\$1st xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 flddx $idx($ap),${fai} ; ap[j,j+1] flddx $idx($np),${fni} ; np[j,j+1] addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) addl $hi0,$ab0,$ab0 extrd,u $ab0,31,32,$hi0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 stw $nm1,-4($tp) ; tp[j-1] addl $ab0,$nm0,$nm0 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$1st ; j++++ extrd,u $nm0,31,32,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,63,32,$ab1 addl $hi1,$nm1,$nm1 ldd -16($xfer),$ab0 addl $ab1,$nm1,$nm1 ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 addl $hi0,$ab0,$ab0 extrd,u $ab0,31,32,$hi0 stw $nm1,-4($tp) ; tp[j-1] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 ldd 0($xfer),$ab1 addl $ab0,$nm0,$nm0 ldd,mb 8($xfer),$nm1 extrd,u $nm0,31,32,$hi1 stw,ma $nm0,8($tp) ; tp[j-1] ldo -1($num),$num ; i-- subi 0,$arrsz,$idx ; j=0 ___ $code.=<<___ if ($BN_SZ==4); fldws,ma 4($bp),${fbi} ; bp[1] ___ $code.=<<___ if ($BN_SZ==8); fldws 0($bp),${fbi} ; bp[1] in flipped word order ___ $code.=<<___; flddx $idx($ap),${fai} ; ap[0,1] flddx $idx($np),${fni} ; np[0,1] fldws 8($xfer),${fti}R ; tp[0] addl $hi0,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 fstws,mb ${fab0}L,-8($xfer) ; save high part stw $nm1,-4($tp) ; tp[j-1] fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L addl $hi1,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} stw $hi0,0($tp) stw $hi1,4($tp) fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int xmpyu ${fn0},${fab0}R,${fm0} ldo `$LOCALS+32+4`($fp),$tp L\$outer xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) ; 33-bit value fstds ${fnm0},-8($xfer) flddx $idx($ap),${fai} ; ap[2] flddx $idx($np),${fni} ; np[2] ldo 8($idx),$idx ; j++++ ldd -16($xfer),$ab0 ; 33-bit value ldd -8($xfer),$nm0 ldw 0($xfer),$hi0 ; high part xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m extrd,u $ab0,31,32,$ti0 ; carry bit extrd,u $ab0,63,32,$ab0 fstds ${fab1},0($xfer) addl $ti0,$hi0,$hi0 ; account carry bit fstds ${fnm1},8($xfer) addl $ab0,$nm0,$nm0 ; low part is discarded ldw 0($tp),$ti1 ; tp[1] extrd,u $nm0,31,32,$hi1 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) L\$inner xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 flddx $idx($ap),${fai} ; ap[j,j+1] flddx $idx($np),${fni} ; np[j,j+1] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 ldw 4($tp),$ti0 ; tp[j] stw $nm1,-4($tp) ; tp[j-1] xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldd -16($xfer),$ab0 fstds ${fab0},-16($xfer) addl $hi0,$ti0,$ti0 addl $ti0,$ab0,$ab0 ldd -8($xfer),$nm0 fstds ${fnm0},-8($xfer) extrd,u $ab0,31,32,$hi0 extrd,u $nm1,31,32,$hi1 ldw 8($tp),$ti1 ; tp[j] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 addl $ab0,$nm0,$nm0 stw,ma $nm0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner ; j++++ extrd,u $nm0,31,32,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldd 0($xfer),$ab1 fstds ${fab1},0($xfer) addl $hi0,$ti1,$ti1 addl $ti1,$ab1,$ab1 ldd 8($xfer),$nm1 fstds ${fnm1},8($xfer) extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 ldd -16($xfer),$ab0 ldd -8($xfer),$nm0 extrd,u $nm1,31,32,$hi1 addl $hi0,$ab0,$ab0 addl $ti0,$ab0,$ab0 stw $nm1,-4($tp) ; tp[j-1] extrd,u $ab0,31,32,$hi0 ldw 8($tp),$ti1 ; tp[j] extrd,u $ab0,63,32,$ab0 addl $hi1,$nm0,$nm0 ldd 0($xfer),$ab1 addl $ab0,$nm0,$nm0 ldd,mb 8($xfer),$nm1 extrd,u $nm0,31,32,$hi1 stw,ma $nm0,8($tp) ; tp[j-1] addib,= -1,$num,L\$outerdone ; i-- subi 0,$arrsz,$idx ; j=0 ___ $code.=<<___ if ($BN_SZ==4); fldws,ma 4($bp),${fbi} ; bp[i] ___ $code.=<<___ if ($BN_SZ==8); ldi 12,$ti0 ; bp[i] in flipped word order addl,ev %r0,$num,$num ldi -4,$ti0 addl $ti0,$bp,$bp fldws 0($bp),${fbi} ___ $code.=<<___; flddx $idx($ap),${fai} ; ap[0] addl $hi0,$ab1,$ab1 flddx $idx($np),${fni} ; np[0] fldws 8($xfer),${fti}R ; tp[0] addl $ti1,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 fstws,mb ${fab0}L,-8($xfer) ; save high part addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L stw $nm1,-4($tp) ; tp[j-1] fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} addl $hi1,$hi0,$hi0 fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] addl $ti0,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int stw $hi0,0($tp) stw $hi1,4($tp) xmpyu ${fn0},${fab0}R,${fm0} b L\$outer ldo `$LOCALS+32+4`($fp),$tp L\$outerdone addl $hi0,$ab1,$ab1 addl $ti1,$ab1,$ab1 extrd,u $ab1,31,32,$hi0 extrd,u $ab1,63,32,$ab1 ldw 4($tp),$ti0 ; tp[j] addl $hi1,$nm1,$nm1 addl $ab1,$nm1,$nm1 extrd,u $nm1,31,32,$hi1 stw $nm1,-4($tp) ; tp[j-1] addl $hi1,$hi0,$hi0 addl $ti0,$hi0,$hi0 extrd,u $hi0,31,32,$hi1 stw $hi0,0($tp) stw $hi1,4($tp) ldo `$LOCALS+32`($fp),$tp sub %r0,%r0,%r0 ; clear borrow ___ $code.=<<___ if ($BN_SZ==4); ldws,ma 4($tp),$ti0 extru,= $rp,31,3,%r0 ; is rp 64-bit aligned? b L\$sub_pa11 addl $tp,$arrsz,$tp L\$sub ldwx $idx($np),$hi0 subb $ti0,$hi0,$hi1 ldwx $idx($tp),$ti0 addib,<> 4,$idx,L\$sub stws,ma $hi1,4($rp) subb $ti0,%r0,$hi1 ldo -4($tp),$tp ___ $code.=<<___ if ($BN_SZ==8); ldd,ma 8($tp),$ti0 L\$sub ldd $idx($np),$hi0 shrpd $ti0,$ti0,32,$ti0 ; flip word order std $ti0,-8($tp) ; save flipped value sub,db $ti0,$hi0,$hi1 ldd,ma 8($tp),$ti0 addib,<> 8,$idx,L\$sub std,ma $hi1,8($rp) extrd,u $ti0,31,32,$ti0 ; carry in flipped word order sub,db $ti0,%r0,$hi1 ldo -8($tp),$tp ___ $code.=<<___; and $tp,$hi1,$ap andcm $rp,$hi1,$bp or $ap,$bp,$np sub $rp,$arrsz,$rp ; rewind rp subi 0,$arrsz,$idx ldo `$LOCALS+32`($fp),$tp L\$copy ldd $idx($np),$hi0 std,ma %r0,8($tp) addib,<> 8,$idx,.-8 ; L\$copy std,ma $hi0,8($rp) ___ if ($BN_SZ==4) { # PA-RISC 1.1 code-path $ablo=$ab0; $abhi=$ab1; $nmlo0=$nm0; $nmhi0=$nm1; $nmlo1="%r9"; $nmhi1="%r8"; $code.=<<___; b L\$done nop .ALIGN 8 L\$parisc11 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -12($xfer),$ablo ldw -16($xfer),$hi0 ldw -4($xfer),$nmlo0 ldw -8($xfer),$nmhi0 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) ldo 8($idx),$idx ; j++++ add $ablo,$nmlo0,$nmlo0 ; discarded addc %r0,$nmhi0,$hi1 ldw 4($xfer),$ablo ldw 0($xfer),$abhi nop L\$1st_pa11 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo ldw 12($xfer),$nmlo1 addc %r0,$abhi,$hi0 ldw 8($xfer),$nmhi1 add $ablo,$nmlo1,$nmlo1 fstds ${fab1},0($xfer) addc %r0,$nmhi1,$nmhi1 fstds ${fnm1},8($xfer) add $hi1,$nmlo1,$nmlo1 ldw -12($xfer),$ablo addc %r0,$nmhi1,$hi1 ldw -16($xfer),$abhi xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] ldw -4($xfer),$nmlo0 xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -8($xfer),$nmhi0 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$hi0 fstds ${fab0},-16($xfer) add $ablo,$nmlo0,$nmlo0 fstds ${fnm0},-8($xfer) addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$ablo stws,ma $nmlo0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$1st_pa11 ; j++++ addc %r0,$nmhi0,$hi1 ldw 8($xfer),$nmhi1 ldw 12($xfer),$nmlo1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m add $hi0,$ablo,$ablo fstds ${fab1},0($xfer) addc %r0,$abhi,$hi0 fstds ${fnm1},8($xfer) add $ablo,$nmlo1,$nmlo1 ldw -16($xfer),$abhi addc %r0,$nmhi1,$nmhi1 ldw -12($xfer),$ablo add $hi1,$nmlo1,$nmlo1 ldw -8($xfer),$nmhi0 addc %r0,$nmhi1,$hi1 ldw -4($xfer),$nmlo0 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$hi0 ldw 0($xfer),$abhi add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldws,mb 8($xfer),$nmhi1 add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$nmlo1 addc %r0,$nmhi0,$hi1 stws,ma $nmlo0,8($tp) ; tp[j-1] ldo -1($num),$num ; i-- subi 0,$arrsz,$idx ; j=0 fldws,ma 4($bp),${fbi} ; bp[1] flddx $idx($ap),${fai} ; ap[0,1] flddx $idx($np),${fni} ; np[0,1] fldws 8($xfer),${fti}R ; tp[0] add $hi0,$ablo,$ablo addc %r0,$abhi,$hi0 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 fstws,mb ${fab0}L,-8($xfer) ; save high part stw $nmlo1,-4($tp) ; tp[j-1] fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} stw $hi0,0($tp) stw $hi1,4($tp) fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int xmpyu ${fn0},${fab0}R,${fm0} ldo `$LOCALS+32+4`($fp),$tp L\$outer_pa11 xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m fstds ${fab0},-16($xfer) ; 33-bit value fstds ${fnm0},-8($xfer) flddx $idx($ap),${fai} ; ap[2,3] flddx $idx($np),${fni} ; np[2,3] ldw -16($xfer),$abhi ; carry bit actually ldo 8($idx),$idx ; j++++ ldw -12($xfer),$ablo ldw -8($xfer),$nmhi0 ldw -4($xfer),$nmlo0 ldw 0($xfer),$hi0 ; high part xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m fstds ${fab1},0($xfer) addl $abhi,$hi0,$hi0 ; account carry bit fstds ${fnm1},8($xfer) add $ablo,$nmlo0,$nmlo0 ; discarded ldw 0($tp),$ti1 ; tp[1] addc %r0,$nmhi0,$hi1 fstds ${fab0},-16($xfer) fstds ${fnm0},-8($xfer) ldw 4($xfer),$ablo ldw 0($xfer),$abhi L\$inner_pa11 xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] flddx $idx($ap),${fai} ; ap[j,j+1] xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m flddx $idx($np),${fni} ; np[j,j+1] add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi ldw 12($xfer),$nmlo1 add $ti1,$ablo,$ablo ldw 8($xfer),$nmhi1 addc %r0,$abhi,$hi0 fstds ${fab1},0($xfer) add $ablo,$nmlo1,$nmlo1 fstds ${fnm1},8($xfer) addc %r0,$nmhi1,$nmhi1 ldw -12($xfer),$ablo add $hi1,$nmlo1,$nmlo1 ldw -16($xfer),$abhi addc %r0,$nmhi1,$hi1 xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] ldw 8($tp),$ti1 ; tp[j] xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m ldw -4($xfer),$nmlo0 add $hi0,$ablo,$ablo ldw -8($xfer),$nmhi0 addc %r0,$abhi,$abhi stw $nmlo1,-4($tp) ; tp[j-1] add $ti0,$ablo,$ablo fstds ${fab0},-16($xfer) addc %r0,$abhi,$hi0 fstds ${fnm0},-8($xfer) add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldw 0($xfer),$abhi add $hi1,$nmlo0,$nmlo0 stws,ma $nmlo0,8($tp) ; tp[j-1] addib,<> 8,$idx,L\$inner_pa11 ; j++++ addc %r0,$nmhi0,$hi1 xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] ldw 12($xfer),$nmlo1 xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m ldw 8($xfer),$nmhi1 add $hi0,$ablo,$ablo ldw 4($tp),$ti0 ; tp[j] addc %r0,$abhi,$abhi fstds ${fab1},0($xfer) add $ti1,$ablo,$ablo fstds ${fnm1},8($xfer) addc %r0,$abhi,$hi0 ldw -16($xfer),$abhi add $ablo,$nmlo1,$nmlo1 ldw -12($xfer),$ablo addc %r0,$nmhi1,$nmhi1 ldw -8($xfer),$nmhi0 add $hi1,$nmlo1,$nmlo1 ldw -4($xfer),$nmlo0 addc %r0,$nmhi1,$hi1 add $hi0,$ablo,$ablo stw $nmlo1,-4($tp) ; tp[j-1] addc %r0,$abhi,$abhi add $ti0,$ablo,$ablo ldw 8($tp),$ti1 ; tp[j] addc %r0,$abhi,$hi0 ldw 0($xfer),$abhi add $ablo,$nmlo0,$nmlo0 ldw 4($xfer),$ablo addc %r0,$nmhi0,$nmhi0 ldws,mb 8($xfer),$nmhi1 add $hi1,$nmlo0,$nmlo0 ldw 4($xfer),$nmlo1 addc %r0,$nmhi0,$hi1 stws,ma $nmlo0,8($tp) ; tp[j-1] addib,= -1,$num,L\$outerdone_pa11; i-- subi 0,$arrsz,$idx ; j=0 fldws,ma 4($bp),${fbi} ; bp[i] flddx $idx($ap),${fai} ; ap[0] add $hi0,$ablo,$ablo addc %r0,$abhi,$abhi flddx $idx($np),${fni} ; np[0] fldws 8($xfer),${fti}R ; tp[0] add $ti1,$ablo,$ablo addc %r0,$abhi,$hi0 ldo 8($idx),$idx ; j++++ xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] ldw 4($tp),$ti0 ; tp[j] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 fstws,mb ${fab0}L,-8($xfer) ; save high part add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 fcpy,sgl %fr0,${fti}L ; zero high part fcpy,sgl %fr0,${fab0}L stw $nmlo1,-4($tp) ; tp[j-1] fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double fcnvxf,dbl,dbl ${fab0},${fab0} add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] add $ti0,$hi0,$hi0 addc %r0,$hi1,$hi1 fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int stw $hi0,0($tp) stw $hi1,4($tp) xmpyu ${fn0},${fab0}R,${fm0} b L\$outer_pa11 ldo `$LOCALS+32+4`($fp),$tp L\$outerdone_pa11 add $hi0,$ablo,$ablo addc %r0,$abhi,$abhi add $ti1,$ablo,$ablo addc %r0,$abhi,$hi0 ldw 4($tp),$ti0 ; tp[j] add $hi1,$nmlo1,$nmlo1 addc %r0,$nmhi1,$nmhi1 add $ablo,$nmlo1,$nmlo1 addc %r0,$nmhi1,$hi1 stw $nmlo1,-4($tp) ; tp[j-1] add $hi1,$hi0,$hi0 addc %r0,%r0,$hi1 add $ti0,$hi0,$hi0 addc %r0,$hi1,$hi1 stw $hi0,0($tp) stw $hi1,4($tp) ldo `$LOCALS+32+4`($fp),$tp sub %r0,%r0,%r0 ; clear borrow ldw -4($tp),$ti0 addl $tp,$arrsz,$tp L\$sub_pa11 ldwx $idx($np),$hi0 subb $ti0,$hi0,$hi1 ldwx $idx($tp),$ti0 addib,<> 4,$idx,L\$sub_pa11 stws,ma $hi1,4($rp) subb $ti0,%r0,$hi1 ldo -4($tp),$tp and $tp,$hi1,$ap andcm $rp,$hi1,$bp or $ap,$bp,$np sub $rp,$arrsz,$rp ; rewind rp subi 0,$arrsz,$idx ldo `$LOCALS+32`($fp),$tp L\$copy_pa11 ldwx $idx($np),$hi0 stws,ma %r0,4($tp) addib,<> 4,$idx,L\$copy_pa11 stws,ma $hi0,4($rp) nop ; alignment L\$done ___ } $code.=<<___; ldi 1,%r28 ; signal "handled" ldo $FRAME($fp),%sp ; destroy tp[num+1] $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 L\$abort bv (%r2) .EXIT $POPMB -$FRAME(%sp),%r3 .PROCEND .STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>" ___ # Explicitly encode PA-RISC 2.0 instructions used in this module, so # that it can be compiled with .LEVEL 1.0. It should be noted that I # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 # directive... my $ldd = sub { my ($mod,$args) = @_; my $orig = "ldd$mod\t$args"; if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset $opcode|=(1<<5) if ($mod =~ /^,m/); $opcode|=(1<<13) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $std = sub { my ($mod,$args) = @_; my $orig = "std$mod\t$args"; if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6 { my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6); $opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset $opcode|=(1<<5) if ($mod =~ /^,m/); $opcode|=(1<<13) if ($mod =~ /^,mb/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $extrd = sub { my ($mod,$args) = @_; my $orig = "extrd$mod\t$args"; # I only have ",u" completer, it's implicitly encoded... if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 { my $opcode=(0x36<<26)|($1<<21)|($4<<16); my $len=32-$3; $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); my $len=32-$2; $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len $opcode |= (1<<13) if ($mod =~ /,\**=/); sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $shrpd = sub { my ($mod,$args) = @_; my $orig = "shrpd$mod\t$args"; if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; my $cpos=63-$3; $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; } else { "\t".$orig; } }; my $sub = sub { my ($mod,$args) = @_; my $orig = "sub$mod\t$args"; if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) { my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3; $opcode|=(1<<10); # e1 $opcode|=(1<<8); # e2 $opcode|=(1<<5); # d sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig } else { "\t".$orig; } }; sub assemble { my ($mnemonic,$mod,$args)=@_; my $opcode = eval("\$$mnemonic"); ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; # flip word order in 64-bit mode... s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8); # assemble 2.0 instructions in 32-bit mode... s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4); s/\bbv\b/bve/gm if ($SIZE_T==8); print $_,"\n"; } close STDOUT;