/* * WARNING: do not edit! * Generated by crypto/bn/bn_prime.pl * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "bn_lcl.h" /* * The quick sieve algorithm approach to weeding out primes is Philip * Zimmermann's, as implemented in PGP. I have had a read of his comments * and implemented my own version. */ #include "bn_prime.h" static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods); static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); int BN_GENCB_call(BN_GENCB *cb, int a, int b) { /* No callback means continue */ if (!cb) return 1; switch (cb->ver) { case 1: /* Deprecated-style callbacks */ if (!cb->cb.cb_1) return 1; cb->cb.cb_1(a, b, cb->arg); return 1; case 2: /* New-style callbacks */ return cb->cb.cb_2(a, b, cb); default: break; } /* Unrecognised callback type */ return 0; } int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) { BIGNUM *t; int found = 0; int i, j, c1 = 0; BN_CTX *ctx = NULL; prime_t *mods = NULL; int checks = BN_prime_checks_for_size(bits); if (bits < 2) { /* There are no prime numbers this small. */ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return 0; } else if (bits == 2 && safe) { /* The smallest safe prime (7) is three bits. */ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); return 0; } mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); if (mods == NULL) goto err; ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (!t) goto err; loop: /* make a random number and set the top and bottom bits */ if (add == NULL) { if (!probable_prime(ret, bits, mods)) goto err; } else { if (safe) { if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) goto err; } else { if (!bn_probable_prime_dh(ret, bits, add, rem, ctx)) goto err; } } if (!BN_GENCB_call(cb, 0, c1++)) /* aborted */ goto err; if (!safe) { i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); if (i == -1) goto err; if (i == 0) goto loop; } else { /* * for "safe prime" generation, check that (p-1)/2 is prime. Since a * prime is odd, We just need to divide by 2 */ if (!BN_rshift1(t, ret)) goto err; for (i = 0; i < checks; i++) { j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); if (j == -1) goto err; if (j == 0) goto loop; j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); if (j == -1) goto err; if (j == 0) goto loop; if (!BN_GENCB_call(cb, 2, c1 - 1)) goto err; /* We have a safe prime test pass */ } } /* we have a prime :-) */ found = 1; err: OPENSSL_free(mods); if (ctx != NULL) BN_CTX_end(ctx); BN_CTX_free(ctx); bn_check_top(ret); return found; } int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) { return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); } int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, int do_trial_division, BN_GENCB *cb) { int i, j, ret = -1; int k; BN_CTX *ctx = NULL; BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ BN_MONT_CTX *mont = NULL; if (BN_cmp(a, BN_value_one()) <= 0) return 0; if (checks == BN_prime_checks) checks = BN_prime_checks_for_size(BN_num_bits(a)); /* first look for small factors */ if (!BN_is_odd(a)) /* a is even => a is prime if and only if a == 2 */ return BN_is_word(a, 2); if (do_trial_division) { for (i = 1; i < NUMPRIMES; i++) { BN_ULONG mod = BN_mod_word(a, primes[i]); if (mod == (BN_ULONG)-1) goto err; if (mod == 0) return BN_is_word(a, primes[i]); } if (!BN_GENCB_call(cb, 1, -1)) goto err; } if (ctx_passed != NULL) ctx = ctx_passed; else if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); A1 = BN_CTX_get(ctx); A1_odd = BN_CTX_get(ctx); check = BN_CTX_get(ctx); if (check == NULL) goto err; /* compute A1 := a - 1 */ if (!BN_copy(A1, a)) goto err; if (!BN_sub_word(A1, 1)) goto err; if (BN_is_zero(A1)) { ret = 0; goto err; } /* write A1 as A1_odd * 2^k */ k = 1; while (!BN_is_bit_set(A1, k)) k++; if (!BN_rshift(A1_odd, A1, k)) goto err; /* Montgomery setup for computations mod a */ mont = BN_MONT_CTX_new(); if (mont == NULL) goto err; if (!BN_MONT_CTX_set(mont, a, ctx)) goto err; for (i = 0; i < checks; i++) { if (!BN_pseudo_rand_range(check, A1)) goto err; if (!BN_add_word(check, 1)) goto err; /* now 1 <= check < a */ j = witness(check, a, A1, A1_odd, k, ctx, mont); if (j == -1) goto err; if (j) { ret = 0; goto err; } if (!BN_GENCB_call(cb, 1, i)) goto err; } ret = 1; err: if (ctx != NULL) { BN_CTX_end(ctx); if (ctx_passed == NULL) BN_CTX_free(ctx); } BN_MONT_CTX_free(mont); return (ret); } static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) { if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ return -1; if (BN_is_one(w)) return 0; /* probably prime */ if (BN_cmp(w, a1) == 0) return 0; /* w == -1 (mod a), 'a' is probably prime */ while (--k) { if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ return -1; if (BN_is_one(w)) return 1; /* 'a' is composite, otherwise a previous 'w' * would have been == -1 (mod 'a') */ if (BN_cmp(w, a1) == 0) return 0; /* w == -1 (mod a), 'a' is probably prime */ } /* * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and * it is neither -1 nor +1 -- so 'a' cannot be prime */ bn_check_top(w); return 1; } static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods) { int i; BN_ULONG delta; BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; char is_single_word = bits <= BN_BITS2; again: if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) return (0); /* we now have a random number 'rnd' to test. */ for (i = 1; i < NUMPRIMES; i++) { BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); if (mod == (BN_ULONG)-1) return 0; mods[i] = (prime_t) mod; } /* * If bits is so small that it fits into a single word then we * additionally don't want to exceed that many bits. */ if (is_single_word) { BN_ULONG size_limit; if (bits == BN_BITS2) { /* * Shifting by this much has undefined behaviour so we do it a * different way */ size_limit = ~((BN_ULONG)0) - BN_get_word(rnd); } else { size_limit = (((BN_ULONG)1) << bits) - BN_get_word(rnd) - 1; } if (size_limit < maxdelta) maxdelta = size_limit; } delta = 0; loop: if (is_single_word) { BN_ULONG rnd_word = BN_get_word(rnd); /*- * In the case that the candidate prime is a single word then * we check that: * 1) It's greater than primes[i] because we shouldn't reject * 3 as being a prime number because it's a multiple of * three. * 2) That it's not a multiple of a known prime. We don't * check that rnd-1 is also coprime to all the known * primes because there aren't many small primes where * that's true. */ for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) { if ((mods[i] + delta) % primes[i] == 0) { delta += 2; if (delta > maxdelta) goto again; goto loop; } } } else { for (i = 1; i < NUMPRIMES; i++) { /* * check that rnd is not a prime and also that gcd(rnd-1,primes) * == 1 (except for 2) */ if (((mods[i] + delta) % primes[i]) <= 1) { delta += 2; if (delta > maxdelta) goto again; goto loop; } } } if (!BN_add_word(rnd, delta)) return (0); if (BN_num_bits(rnd) != bits) goto again; bn_check_top(rnd); return (1); } int bn_probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) { int i, ret = 0; BIGNUM *t1; BN_CTX_start(ctx); if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) goto err; /* we need ((rnd-rem) % add) == 0 */ if (!BN_mod(t1, rnd, add, ctx)) goto err; if (!BN_sub(rnd, rnd, t1)) goto err; if (rem == NULL) { if (!BN_add_word(rnd, 1)) goto err; } else { if (!BN_add(rnd, rnd, rem)) goto err; } /* we now have a random number 'rand' to test. */ loop: for (i = 1; i < NUMPRIMES; i++) { /* check that rnd is a prime */ BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); if (mod == (BN_ULONG)-1) goto err; if (mod <= 1) { if (!BN_add(rnd, rnd, add)) goto err; goto loop; } } ret = 1; err: BN_CTX_end(ctx); bn_check_top(rnd); return (ret); } static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, const BIGNUM *rem, BN_CTX *ctx) { int i, ret = 0; BIGNUM *t1, *qadd, *q; bits--; BN_CTX_start(ctx); t1 = BN_CTX_get(ctx); q = BN_CTX_get(ctx); qadd = BN_CTX_get(ctx); if (qadd == NULL) goto err; if (!BN_rshift1(qadd, padd)) goto err; if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) goto err; /* we need ((rnd-rem) % add) == 0 */ if (!BN_mod(t1, q, qadd, ctx)) goto err; if (!BN_sub(q, q, t1)) goto err; if (rem == NULL) { if (!BN_add_word(q, 1)) goto err; } else { if (!BN_rshift1(t1, rem)) goto err; if (!BN_add(q, q, t1)) goto err; } /* we now have a random number 'rand' to test. */ if (!BN_lshift1(p, q)) goto err; if (!BN_add_word(p, 1)) goto err; loop: for (i = 1; i < NUMPRIMES; i++) { /* check that p and q are prime */ /* * check that for p and q gcd(p-1,primes) == 1 (except for 2) */ BN_ULONG pmod = BN_mod_word(p, (BN_ULONG)primes[i]); BN_ULONG qmod = BN_mod_word(q, (BN_ULONG)primes[i]); if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1) goto err; if (pmod == 0 || qmod == 0) { if (!BN_add(p, p, padd)) goto err; if (!BN_add(q, q, qadd)) goto err; goto loop; } } ret = 1; err: BN_CTX_end(ctx); bn_check_top(p); return (ret); }