/* crypto/bio/bio_dgram.c */ /* * DTLS implementation written by Nagendra Modadugu * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ /* ==================================================================== * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #define USE_SOCKETS #include "cryptlib.h" #include #ifndef OPENSSL_NO_DGRAM # if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS) # include # endif # ifdef OPENSSL_SYS_LINUX # define IP_MTU 14 /* linux is lame */ # endif # ifdef WATT32 # define sock_write SockWrite /* Watt-32 uses same names */ # define sock_read SockRead # define sock_puts SockPuts # endif static int dgram_write(BIO *h, const char *buf, int num); static int dgram_read(BIO *h, char *buf, int size); static int dgram_puts(BIO *h, const char *str); static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int dgram_new(BIO *h); static int dgram_free(BIO *data); static int dgram_clear(BIO *bio); static int BIO_dgram_should_retry(int s); static void get_current_time(struct timeval *t); static BIO_METHOD methods_dgramp = { BIO_TYPE_DGRAM, "datagram socket", dgram_write, dgram_read, dgram_puts, NULL, /* dgram_gets, */ dgram_ctrl, dgram_new, dgram_free, NULL, }; typedef struct bio_dgram_data_st { union { struct sockaddr sa; struct sockaddr_in sa_in; # if OPENSSL_USE_IPV6 struct sockaddr_in6 sa_in6; # endif } peer; unsigned int connected; unsigned int _errno; unsigned int mtu; struct timeval next_timeout; struct timeval socket_timeout; } bio_dgram_data; BIO_METHOD *BIO_s_datagram(void) { return (&methods_dgramp); } BIO *BIO_new_dgram(int fd, int close_flag) { BIO *ret; ret = BIO_new(BIO_s_datagram()); if (ret == NULL) return (NULL); BIO_set_fd(ret, fd, close_flag); return (ret); } static int dgram_new(BIO *bi) { bio_dgram_data *data = NULL; bi->init = 0; bi->num = 0; data = OPENSSL_malloc(sizeof(bio_dgram_data)); if (data == NULL) return 0; memset(data, 0x00, sizeof(bio_dgram_data)); bi->ptr = data; bi->flags = 0; return (1); } static int dgram_free(BIO *a) { bio_dgram_data *data; if (a == NULL) return (0); if (!dgram_clear(a)) return 0; data = (bio_dgram_data *)a->ptr; if (data != NULL) OPENSSL_free(data); return (1); } static int dgram_clear(BIO *a) { if (a == NULL) return (0); if (a->shutdown) { if (a->init) { SHUTDOWN2(a->num); } a->init = 0; a->flags = 0; } return (1); } static void dgram_adjust_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; union { size_t s; int i; } sz = { 0 }; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { struct timeval timenow, timeleft; /* Read current socket timeout */ # ifdef OPENSSL_SYS_WINDOWS int timeout; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); } else { data->socket_timeout.tv_sec = timeout / 1000; data->socket_timeout.tv_usec = (timeout % 1000) * 1000; } # else sz.i = sizeof(data->socket_timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), (void *)&sz) < 0) { perror("getsockopt"); } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) OPENSSL_assert(sz.s <= sizeof(data->socket_timeout)); # endif /* Get current time */ get_current_time(&timenow); /* Calculate time left until timer expires */ memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval)); timeleft.tv_sec -= timenow.tv_sec; timeleft.tv_usec -= timenow.tv_usec; if (timeleft.tv_usec < 0) { timeleft.tv_sec--; timeleft.tv_usec += 1000000; } if (timeleft.tv_sec < 0) { timeleft.tv_sec = 0; timeleft.tv_usec = 1; } /* * Adjust socket timeout if next handhake message timer will expire * earlier. */ if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv_usec == 0) || (data->socket_timeout.tv_sec > timeleft.tv_sec) || (data->socket_timeout.tv_sec == timeleft.tv_sec && data->socket_timeout.tv_usec >= timeleft.tv_usec)) { # ifdef OPENSSL_SYS_WINDOWS timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft, sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } } # endif } static void dgram_reset_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { # ifdef OPENSSL_SYS_WINDOWS int timeout = data->socket_timeout.tv_sec * 1000 + data->socket_timeout.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } # endif } static int dgram_read(BIO *b, char *out, int outl) { int ret = 0; bio_dgram_data *data = (bio_dgram_data *)b->ptr; struct { /* * See commentary in b_sock.c. */ union { size_t s; int i; } len; union { struct sockaddr sa; struct sockaddr_in sa_in; # if OPENSSL_USE_IPV6 struct sockaddr_in6 sa_in6; # endif } peer; } sa; sa.len.s = 0; sa.len.i = sizeof(sa.peer); if (out != NULL) { clear_socket_error(); memset(&sa.peer, 0x00, sizeof(sa.peer)); dgram_adjust_rcv_timeout(b); ret = recvfrom(b->num, out, outl, 0, &sa.peer.sa, (void *)&sa.len); if (sizeof(sa.len.i) != sizeof(sa.len.s) && sa.len.i == 0) { OPENSSL_assert(sa.len.s <= sizeof(sa.peer)); sa.len.i = (int)sa.len.s; } if (!data->connected && ret >= 0) BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer); BIO_clear_retry_flags(b); if (ret < 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_read(b); data->_errno = get_last_socket_error(); } } dgram_reset_rcv_timeout(b); } return (ret); } static int dgram_write(BIO *b, const char *in, int inl) { int ret; bio_dgram_data *data = (bio_dgram_data *)b->ptr; clear_socket_error(); if (data->connected) ret = writesocket(b->num, in, inl); else { int peerlen = sizeof(data->peer); if (data->peer.sa.sa_family == AF_INET) peerlen = sizeof(data->peer.sa_in); # if OPENSSL_USE_IPV6 else if (data->peer.sa.sa_family == AF_INET6) peerlen = sizeof(data->peer.sa_in6); # endif # if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK) ret = sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen); # else ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen); # endif } BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_write(b); data->_errno = get_last_socket_error(); # if 0 /* higher layers are responsible for querying * MTU, if necessary */ if (data->_errno == EMSGSIZE) /* retrieve the new MTU */ BIO_ctrl(b, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); # endif } } return (ret); } static long dgram_get_mtu_overhead(bio_dgram_data *data) { long ret; switch (data->peer.sa.sa_family) { case AF_INET: /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; break; # if OPENSSL_USE_IPV6 case AF_INET6: # ifdef IN6_IS_ADDR_V4MAPPED if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr)) /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; else # endif /* * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP */ ret = 48; break; # endif default: /* We don't know. Go with the historical default */ ret = 28; break; } return ret; } static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; int *ip; struct sockaddr *to = NULL; bio_dgram_data *data = NULL; # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU)) int sockopt_val = 0; socklen_t sockopt_len; /* assume that system supporting IP_MTU is * modern enough to define socklen_t */ socklen_t addr_len; union { struct sockaddr sa; struct sockaddr_in s4; # if OPENSSL_USE_IPV6 struct sockaddr_in6 s6; # endif } addr; # endif data = (bio_dgram_data *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: num = 0; case BIO_C_FILE_SEEK: ret = 0; break; case BIO_C_FILE_TELL: case BIO_CTRL_INFO: ret = 0; break; case BIO_C_SET_FD: dgram_clear(b); b->num = *((int *)ptr); b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_DGRAM_CONNECT: to = (struct sockaddr *)ptr; # if 0 if (connect(b->num, to, sizeof(struct sockaddr)) < 0) { perror("connect"); ret = 0; } else { # endif switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } # if 0 } # endif break; /* (Linux)kernel sets DF bit on outgoing IP packets */ case BIO_CTRL_DGRAM_MTU_DISCOVER: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO) addr_len = (socklen_t) sizeof(addr); memset((void *)&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } switch (addr.sa.sa_family) { case AF_INET: sockopt_val = IP_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO) case AF_INET6: sockopt_val = IPV6_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # endif default: ret = -1; break; } ret = -1; # else break; # endif case BIO_CTRL_DGRAM_QUERY_MTU: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU) addr_len = (socklen_t) sizeof(addr); memset((void *)&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } sockopt_len = sizeof(sockopt_val); switch (addr.sa.sa_family) { case AF_INET: if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IP * options are used. */ data->mtu = sockopt_val - 8 - 20; ret = data->mtu; } break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU) case AF_INET6: if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IPV6 * options are used. */ data->mtu = sockopt_val - 8 - 40; ret = data->mtu; } break; # endif default: ret = 0; break; } # else ret = 0; # endif break; case BIO_CTRL_DGRAM_GET_FALLBACK_MTU: ret = -dgram_get_mtu_overhead(data); switch (data->peer.sa.sa_family) { case AF_INET: ret += 576; break; # if OPENSSL_USE_IPV6 case AF_INET6: # ifdef IN6_IS_ADDR_V4MAPPED if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr)) ret += 576; else # endif ret += 1280; break; # endif default: ret += 576; break; } break; case BIO_CTRL_DGRAM_GET_MTU: return data->mtu; break; case BIO_CTRL_DGRAM_SET_MTU: data->mtu = num; ret = num; break; case BIO_CTRL_DGRAM_SET_CONNECTED: to = (struct sockaddr *)ptr; if (to != NULL) { data->connected = 1; switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } } else { data->connected = 0; memset(&(data->peer), 0x00, sizeof(data->peer)); } break; case BIO_CTRL_DGRAM_GET_PEER: switch (data->peer.sa.sa_family) { case AF_INET: ret = sizeof(data->peer.sa_in); break; # if OPENSSL_USE_IPV6 case AF_INET6: ret = sizeof(data->peer.sa_in6); break; # endif default: ret = sizeof(data->peer.sa); break; } if (num == 0 || num > ret) num = ret; memcpy(ptr, &data->peer, (ret = num)); break; case BIO_CTRL_DGRAM_SET_PEER: to = (struct sockaddr *)ptr; switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } break; case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT: memcpy(&(data->next_timeout), ptr, sizeof(struct timeval)); break; # if defined(SO_RCVTIMEO) case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif # if defined(SO_SNDTIMEO) case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP: /* fall-through */ case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP: # ifdef OPENSSL_SYS_WINDOWS if (data->_errno == WSAETIMEDOUT) # else if (data->_errno == EAGAIN) # endif { ret = 1; data->_errno = 0; } else ret = 0; break; # ifdef EMSGSIZE case BIO_CTRL_DGRAM_MTU_EXCEEDED: if (data->_errno == EMSGSIZE) { ret = 1; data->_errno = 0; } else ret = 0; break; # endif case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD: ret = dgram_get_mtu_overhead(data); break; default: ret = 0; break; } return (ret); } static int dgram_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = dgram_write(bp, str, n); return (ret); } static int BIO_dgram_should_retry(int i) { int err; if ((i == 0) || (i == -1)) { err = get_last_socket_error(); # if defined(OPENSSL_SYS_WINDOWS) /* * If the socket return value (i) is -1 and err is unexpectedly 0 at * this point, the error code was overwritten by another system call * before this error handling is called. */ # endif return (BIO_dgram_non_fatal_error(err)); } return (0); } int BIO_dgram_non_fatal_error(int err) { switch (err) { # if defined(OPENSSL_SYS_WINDOWS) # if defined(WSAEWOULDBLOCK) case WSAEWOULDBLOCK: # endif # if 0 /* This appears to always be an error */ # if defined(WSAENOTCONN) case WSAENOTCONN: # endif # endif # endif # ifdef EWOULDBLOCK # ifdef WSAEWOULDBLOCK # if WSAEWOULDBLOCK != EWOULDBLOCK case EWOULDBLOCK: # endif # else case EWOULDBLOCK: # endif # endif # ifdef EINTR case EINTR: # endif # ifdef EAGAIN # if EWOULDBLOCK != EAGAIN case EAGAIN: # endif # endif # ifdef EPROTO case EPROTO: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif return (1); /* break; */ default: break; } return (0); } static void get_current_time(struct timeval *t) { # ifdef OPENSSL_SYS_WIN32 struct _timeb tb; _ftime(&tb); t->tv_sec = (long)tb.time; t->tv_usec = (long)tb.millitm * 1000; # elif defined(OPENSSL_SYS_VMS) struct timeb tb; ftime(&tb); t->tv_sec = (long)tb.time; t->tv_usec = (long)tb.millitm * 1000; # else gettimeofday(t, NULL); # endif } #endif