/* ==================================================================== * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * */ #define OPENSSL_FIPSAPI #include #ifndef OPENSSL_NO_AES #include #include #include #include #include #include "evp_locl.h" #include "modes_lcl.h" #include typedef struct { union { double align; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int tls_aad_len; /* TLS AAD length */ ctr128_f ctr; } EVP_AES_GCM_CTX; typedef struct { union { double align; AES_KEY ks; } ks1, ks2; /* AES key schedules to use */ XTS128_CONTEXT xts; void (*stream)(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); } EVP_AES_XTS_CTX; typedef struct { union { double align; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_AES_CCM_CTX; #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) #ifdef VPAES_ASM int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void vpaes_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); #endif #ifdef BSAES_ASM void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char ivec[16], int enc); void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #ifdef AES_CTR_ASM void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, const unsigned char ivec[AES_BLOCK_SIZE]); #endif #ifdef AES_XTS_ASM void AES_xts_encrypt(const char *inp,char *out,size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void AES_xts_decrypt(const char *inp,char *out,size_t len, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); #endif #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) extern unsigned int OPENSSL_ppccap_P; # ifdef VPAES_ASM # define VPAES_CAPABLE (OPENSSL_ppccap_P&(1<<1)) # endif # define HWAES_CAPABLE (OPENSSL_ppccap_P&(1<<2)) # define HWAES_set_encrypt_key aes_p8_set_encrypt_key # define HWAES_set_decrypt_key aes_p8_set_decrypt_key # define HWAES_encrypt aes_p8_encrypt # define HWAES_decrypt aes_p8_decrypt # define HWAES_cbc_encrypt aes_p8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks #endif #if defined(AES_ASM) && !defined(I386_ONLY) && ( \ ((defined(__i386) || defined(__i386__) || \ defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) || \ defined(__INTEL__) ) extern unsigned int OPENSSL_ia32cap_P[]; #ifdef VPAES_ASM #define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) #endif #ifdef BSAES_ASM #define BSAES_CAPABLE VPAES_CAPABLE #endif /* * AES-NI section */ #define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) int aesni_set_encrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); int aesni_set_decrypt_key(const unsigned char *userKey, int bits, AES_KEY *key); void aesni_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, int enc); void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int enc); void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char *ivec); void aesni_xts_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_xts_decrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out, size_t blocks, const void *key, const unsigned char ivec[16], unsigned char cmac[16]); #if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) size_t aesni_gcm_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); #define AES_gcm_encrypt aesni_gcm_encrypt size_t aesni_gcm_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], u64 *Xi); #define AES_gcm_decrypt aesni_gcm_decrypt void gcm_ghash_avx(u64 Xi[2],const u128 Htable[16],const u8 *in,size_t len); #define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \ gctx->gcm.ghash==gcm_ghash_avx) #define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ gctx->gcm.ghash==gcm_ghash_avx) #undef AES_GCM_ASM2 /* minor size optimization */ #endif static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, ctx->key_len*8, ctx->cipher_data); dat->block = (block128_f)aesni_decrypt; dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, ctx->key_len*8, ctx->cipher_data); dat->block = (block128_f)aesni_encrypt; if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; else if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; else dat->stream.cbc = NULL; } if(ret < 0) { EVPerr(EVP_F_AESNI_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len) { aesni_cbc_encrypt(in,out,len,ctx->cipher_data,ctx->iv,ctx->encrypt); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; if (lencipher_data,ctx->encrypt); return 1; } #define aesni_ofb_cipher aes_ofb_cipher static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aesni_cfb_cipher aes_cfb_cipher static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aesni_cfb8_cipher aes_cfb8_cipher static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aesni_cfb1_cipher aes_cfb1_cipher static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aesni_ctr_cipher aes_ctr_cipher static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } #define aesni_gcm_cipher aes_gcm_cipher static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { /* key_len is two AES keys */ if (enc) { aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)aesni_encrypt; xctx->stream = aesni_xts_encrypt; } else { aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)aesni_decrypt; xctx->stream = aesni_xts_decrypt; } aesni_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f)aesni_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } #define aesni_xts_cipher aes_xts_cipher static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)aesni_encrypt); cctx->str = enc?(ccm128_f)aesni_ccm64_encrypt_blocks : (ccm128_f)aesni_ccm64_decrypt_blocks; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } #define aesni_ccm_cipher aes_ccm_cipher static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_init_key, \ aesni_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_##mode##_init_key, \ aesni_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) #include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; #define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES) void aes_t4_set_encrypt_key (const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_set_decrypt_key (const unsigned char *key, int bits, AES_KEY *ks); void aes_t4_encrypt (const unsigned char *in, unsigned char *out, const AES_KEY *key); void aes_t4_decrypt (const unsigned char *in, unsigned char *out, const AES_KEY *key); /* * Key-length specific subroutines were chosen for following reason. * Each SPARC T4 core can execute up to 8 threads which share core's * resources. Loading as much key material to registers allows to * minimize references to shared memory interface, as well as amount * of instructions in inner loops [much needed on T4]. But then having * non-key-length specific routines would require conditional branches * either in inner loops or on subroutines' entries. Former is hardly * acceptable, while latter means code size increase to size occupied * by multiple key-length specfic subroutines, so why fight? */ void aes128_t4_cbc_encrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_cbc_decrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_encrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes192_t4_cbc_decrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_encrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes256_t4_cbc_decrypt (const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec); void aes128_t4_ctr32_encrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes192_t4_ctr32_encrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes256_t4_ctr32_encrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key, unsigned char *ivec); void aes128_t4_xts_encrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes128_t4_xts_decrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_encrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); void aes256_t4_xts_decrypt (const unsigned char *in, unsigned char *out, size_t blocks, const AES_KEY *key1, const AES_KEY *key2, const unsigned char *ivec); static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode, bits; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; bits = ctx->key_len*8; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = 0; aes_t4_set_decrypt_key(key, bits, ctx->cipher_data); dat->block = (block128_f)aes_t4_decrypt; switch (bits) { case 128: dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)aes128_t4_cbc_decrypt : NULL; break; case 192: dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)aes192_t4_cbc_decrypt : NULL; break; case 256: dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)aes256_t4_cbc_decrypt : NULL; break; default: ret = -1; } } else { ret = 0; aes_t4_set_encrypt_key(key, bits, ctx->cipher_data); dat->block = (block128_f)aes_t4_encrypt; switch (bits) { case 128: if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)aes128_t4_cbc_encrypt; else if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)aes128_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 192: if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)aes192_t4_cbc_encrypt; else if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)aes192_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 256: if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)aes256_t4_cbc_encrypt; else if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)aes256_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; default: ret = -1; } } if(ret < 0) { EVPerr(EVP_F_AES_T4_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } #define aes_t4_cbc_cipher aes_cbc_cipher static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len); #define aes_t4_ecb_cipher aes_ecb_cipher static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len); #define aes_t4_ofb_cipher aes_ofb_cipher static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aes_t4_cfb_cipher aes_cfb_cipher static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aes_t4_cfb8_cipher aes_cfb8_cipher static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aes_t4_cfb1_cipher aes_cfb1_cipher static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len); #define aes_t4_ctr_cipher aes_ctr_cipher static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 8; aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aes_t4_encrypt); switch (bits) { case 128: gctx->ctr = (ctr128_f)aes128_t4_ctr32_encrypt; break; case 192: gctx->ctr = (ctr128_f)aes192_t4_ctr32_encrypt; break; case 256: gctx->ctr = (ctr128_f)aes256_t4_ctr32_encrypt; break; default: return 0; } /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } #define aes_t4_gcm_cipher aes_gcm_cipher static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 4; xctx->stream = NULL; /* key_len is two AES keys */ if (enc) { aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)aes_t4_encrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_encrypt; break; #if 0 /* not yet */ case 192: xctx->stream = aes192_t4_xts_encrypt; break; #endif case 256: xctx->stream = aes256_t4_xts_encrypt; break; default: return 0; } } else { aes_t4_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)aes_t4_decrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_decrypt; break; #if 0 /* not yet */ case 192: xctx->stream = aes192_t4_xts_decrypt; break; #endif case 256: xctx->stream = aes256_t4_xts_decrypt; break; default: return 0; } } aes_t4_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f)aes_t4_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } #define aes_t4_xts_cipher aes_xts_cipher static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { int bits = ctx->key_len * 8; aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)aes_t4_encrypt); #if 0 /* not yet */ switch (bits) { case 128: cctx->str = enc?(ccm128_f)aes128_t4_ccm64_encrypt : (ccm128_f)ae128_t4_ccm64_decrypt; break; case 192: cctx->str = enc?(ccm128_f)aes192_t4_ccm64_encrypt : (ccm128_f)ae192_t4_ccm64_decrypt; break; case 256: cctx->str = enc?(ccm128_f)aes256_t4_ccm64_encrypt : (ccm128_f)ae256_t4_ccm64_decrypt; break; default: return 0; } #endif cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } #define aes_t4_ccm_cipher aes_ccm_cipher static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_init_key, \ aes_t4_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_##mode##_init_key, \ aes_t4_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } #else #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #endif #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__)) #include "arm_arch.h" #if __ARM_ARCH__>=7 # if defined(BSAES_ASM) # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES) # define HWAES_set_encrypt_key aes_v8_set_encrypt_key # define HWAES_set_decrypt_key aes_v8_set_decrypt_key # define HWAES_encrypt aes_v8_encrypt # define HWAES_decrypt aes_v8_decrypt # define HWAES_cbc_encrypt aes_v8_cbc_encrypt # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks #endif #endif #if defined(HWAES_CAPABLE) int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key); void HWAES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key); void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, const int enc); void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, const unsigned char ivec[16]); #endif #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; mode = ctx->cipher->flags & EVP_CIPH_MODE; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_decrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)HWAES_decrypt; dat->stream.cbc = NULL; #ifdef HWAES_cbc_encrypt if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)HWAES_cbc_encrypt; #endif } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode==EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_decrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)vpaes_decrypt; dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_decrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)AES_decrypt; dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; } else #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_encrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)HWAES_encrypt; dat->stream.cbc = NULL; #ifdef HWAES_cbc_encrypt if (mode==EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f)HWAES_cbc_encrypt; else #endif #ifdef HWAES_ctr32_encrypt_blocks if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)HWAES_ctr32_encrypt_blocks; else #endif (void)0; /* terminate potentially open 'else' */ } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode==EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_encrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)vpaes_encrypt; dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_encrypt_key(key,ctx->key_len*8,&dat->ks.ks); dat->block = (block128_f)AES_encrypt; dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; #ifdef AES_CTR_ASM if (mode==EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt; #endif } if(ret < 0) { EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.cbc) (*dat->stream.cbc)(in,out,len,&dat->ks,ctx->iv,ctx->encrypt); else if (ctx->encrypt) CRYPTO_cbc128_encrypt(in,out,len,&dat->ks,ctx->iv,dat->block); else CRYPTO_cbc128_decrypt(in,out,len,&dat->ks,ctx->iv,dat->block); return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in, size_t len) { size_t bl = ctx->cipher->block_size; size_t i; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (lenblock)(in+i,out+i,&dat->ks); return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_ofb128_encrypt(in,out,len,&dat->ks, ctx->iv,&ctx->num,dat->block); return 1; } static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_cfb128_encrypt(in,out,len,&dat->ks, ctx->iv,&ctx->num,ctx->encrypt,dat->block); return 1; } static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; CRYPTO_cfb128_8_encrypt(in,out,len,&dat->ks, ctx->iv,&ctx->num,ctx->encrypt,dat->block); return 1; } static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out, const unsigned char *in,size_t len) { EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) { CRYPTO_cfb128_1_encrypt(in,out,len,&dat->ks, ctx->iv,&ctx->num,ctx->encrypt,dat->block); return 1; } while (len>=MAXBITCHUNK) { CRYPTO_cfb128_1_encrypt(in,out,MAXBITCHUNK*8,&dat->ks, ctx->iv,&ctx->num,ctx->encrypt,dat->block); len-=MAXBITCHUNK; } if (len) CRYPTO_cfb128_1_encrypt(in,out,len*8,&dat->ks, ctx->iv,&ctx->num,ctx->encrypt,dat->block); return 1; } static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = ctx->num; EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in,out,len,&dat->ks, ctx->iv,ctx->buf,&num,dat->stream.ctr); else CRYPTO_ctr128_encrypt(in,out,len,&dat->ks, ctx->iv,ctx->buf,&num,dat->block); ctx->num = (size_t)num; return 1; } BLOCK_CIPHER_generic_pack(NID_aes,128,EVP_CIPH_FLAG_FIPS) BLOCK_CIPHER_generic_pack(NID_aes,192,EVP_CIPH_FLAG_FIPS) BLOCK_CIPHER_generic_pack(NID_aes,256,EVP_CIPH_FLAG_FIPS) static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = c->cipher_data; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); return 1; } /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n=8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = c->cipher->iv_len; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GCM_SET_IVLEN: if (arg <= 0) return 0; #ifdef OPENSSL_FIPS if (FIPS_module_mode() && !(c->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) && arg < 12) return 0; #endif /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); gctx->iv = OPENSSL_malloc(arg); if (!gctx->iv) return 0; } gctx->ivlen = arg; return 1; case EVP_CTRL_GCM_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_GCM_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* Fixed field must be at least 4 bytes and invocation field * at least 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* Invocation field will be at least 8 bytes in size and * so no need to check wrap around or increment more than * last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != 13) return 0; memcpy(c->buf, ptr, arg); gctx->tls_aad_len = arg; { unsigned int len=c->buf[arg-2]<<8|c->buf[arg-1]; /* Correct length for explicit IV */ len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) len -= EVP_GCM_TLS_TAG_LEN; c->buf[arg-2] = len>>8; c->buf[arg-1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; default: return -1; } } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key,ctx->key_len*8,&gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm,&gctx->ks, (block128_f)HWAES_encrypt); #ifdef HWAES_ctr32_encrypt_blocks gctx->ctr = (ctr128_f)HWAES_ctr32_encrypt_blocks; #else gctx->ctr = NULL; #endif break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) { AES_set_encrypt_key(key,ctx->key_len*8,&gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm,&gctx->ks, (block128_f)AES_encrypt); gctx->ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key,ctx->key_len*8,&gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm,&gctx->ks, (block128_f)vpaes_encrypt); gctx->ctr = NULL; break; } else #endif (void)0; /* terminate potentially open 'else' */ AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)AES_encrypt); #ifdef AES_CTR_ASM gctx->ctr = (ctr128_f)AES_ctr32_encrypt; #else gctx->ctr = NULL; #endif } while (0); /* If we have an iv can set it directly, otherwise use * saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /* Handle TLS GCM packet format. This consists of the last portion of the IV * followed by the payload and finally the tag. On encrypt generate IV, * encrypt payload and write the tag. On verify retrieve IV, decrypt payload * and verify tag. */ static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN+EVP_GCM_TLS_TAG_LEN)) return -1; /* Set IV from start of buffer or generate IV and write to start * of buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (ctx->encrypt) { /* Encrypt payload */ if (gctx->ctr) { size_t bulk=0; #if defined(AES_GCM_ASM) if (len>=32 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm,NULL,NULL,0)) return -1; bulk = AES_gcm_encrypt(in,out,len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in +bulk, out+bulk, len-bulk, gctx->ctr)) goto err; } else { size_t bulk=0; #if defined(AES_GCM_ASM2) if (len>=32 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm,NULL,NULL,0)) return -1; bulk = AES_gcm_encrypt(in,out,len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in +bulk, out+bulk, len-bulk)) goto err; } out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (gctx->ctr) { size_t bulk=0; #if defined(AES_GCM_ASM) if (len>=16 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm,NULL,NULL,0)) return -1; bulk = AES_gcm_decrypt(in,out,len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in +bulk, out+bulk, len-bulk, gctx->ctr)) goto err; } else { size_t bulk=0; #if defined(AES_GCM_ASM2) if (len>=16 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm,NULL,NULL,0)) return -1; bulk = AES_gcm_decrypt(in,out,len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in +bulk, out+bulk, len-bulk)) goto err; } /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = ctx->cipher_data; /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (gctx->ctr) { size_t bulk=0; #if defined(AES_GCM_ASM) if (len>=32 && AES_GCM_ASM(gctx)) { size_t res = (16-gctx->gcm.mres)%16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in,out,res)) return -1; bulk = AES_gcm_encrypt(in+res, out+res,len-res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in +bulk, out+bulk, len-bulk, gctx->ctr)) return -1; } else { size_t bulk=0; #if defined(AES_GCM_ASM2) if (len>=32 && AES_GCM_ASM2(gctx)) { size_t res = (16-gctx->gcm.mres)%16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in,out,res)) return -1; bulk = AES_gcm_encrypt(in+res, out+res,len-res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in +bulk, out+bulk, len-bulk)) return -1; } } else { if (gctx->ctr) { size_t bulk=0; #if defined(AES_GCM_ASM) if (len>=16 && AES_GCM_ASM(gctx)) { size_t res = (16-gctx->gcm.mres)%16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in,out,res)) return -1; bulk = AES_gcm_decrypt(in+res, out+res,len-res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in +bulk, out+bulk, len-bulk, gctx->ctr)) return -1; } else { size_t bulk=0; #if defined(AES_GCM_ASM2) if (len>=16 && AES_GCM_ASM2(gctx)) { size_t res = (16-gctx->gcm.mres)%16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in,out,res)) return -1; bulk = AES_gcm_decrypt(in+res, out+res,len-res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in +bulk, out+bulk, len-bulk)) return -1; } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT) BLOCK_CIPHER_custom(NID_aes,128,1,12,gcm,GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes,192,1,12,gcm,GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes,256,1,12,gcm,GCM, EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS) static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = c->cipher_data; if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { #ifdef AES_XTS_ASM xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; #else xctx->stream = NULL; #endif /* key_len is two AES keys */ #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { if (enc) { HWAES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)HWAES_encrypt; } else { HWAES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)HWAES_decrypt; } HWAES_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f)HWAES_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { if (enc) { vpaes_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)vpaes_encrypt; } else { vpaes_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)vpaes_decrypt; } vpaes_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f)vpaes_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif (void)0; /* terminate potentially open 'else' */ if (enc) { AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)AES_encrypt; } else { AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks); xctx->xts.block1 = (block128_f)AES_decrypt; } AES_set_encrypt_key(key + ctx->key_len/2, ctx->key_len * 4, &xctx->ks2.ks); xctx->xts.block2 = (block128_f)AES_encrypt; xctx->xts.key1 = &xctx->ks1; } while (0); if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = ctx->cipher_data; if (!xctx->xts.key1 || !xctx->xts.key2) return 0; if (!out || !in || lenflags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) && (len > (1UL<<20)*16)) { EVPerr(EVP_F_AES_XTS_CIPHER, EVP_R_TOO_LARGE); return 0; } #endif if (xctx->stream) (*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2, ctx->iv); else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, ctx->encrypt)) return 0; return 1; } #define aes_xts_cleanup NULL #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT) BLOCK_CIPHER_custom(NID_aes,128,1,16,xts,XTS,EVP_CIPH_FLAG_FIPS|XTS_FLAGS) BLOCK_CIPHER_custom(NID_aes,256,1,16,xts,XTS,EVP_CIPH_FLAG_FIPS|XTS_FLAGS) static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = c->cipher_data; switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_CCM_SET_IVLEN: arg = 15 - arg; case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_CCM_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if ((c->encrypt && ptr) || (!c->encrypt && !ptr)) return 0; if (ptr) { cctx->tag_set = 1; memcpy(c->buf, ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_CCM_GET_TAG: if (!c->encrypt || !cctx->tag_set) return 0; if(!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key,ctx->key_len*8,&cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)HWAES_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)vpaes_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } #endif AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f)AES_encrypt); cctx->str = NULL; cctx->key_set = 1; } while (0); if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = ctx->cipher_data; CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->iv_set && !cctx->key_set) return -1; if (!ctx->encrypt && !cctx->tag_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* EVP_*Final() doesn't return any data */ if (!in) return 0; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (ctx->encrypt) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!memcmp(tag, ctx->buf, cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } #define aes_ccm_cleanup NULL BLOCK_CIPHER_custom(NID_aes,128,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes,192,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes,256,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS) typedef struct { union { double align; AES_KEY ks; } ks; /* Indicates if IV has been set */ unsigned char *iv; } EVP_AES_WRAP_CTX; static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; if (!iv && !key) return 1; if (key) { if (ctx->encrypt) AES_set_encrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); else AES_set_decrypt_key(key, ctx->key_len * 8, &wctx->ks.ks); if (!iv) wctx->iv = NULL; } if (iv) { memcpy(ctx->iv, iv, 8); wctx->iv = ctx->iv; } return 1; } static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inlen) { EVP_AES_WRAP_CTX *wctx = ctx->cipher_data; size_t rv; if (inlen % 8) return 0; if (!out) { if (ctx->encrypt) return inlen + 8; else return inlen - 8; } if (!in) return 0; if (ctx->encrypt) rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f)AES_encrypt); else rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f)AES_decrypt); return rv ? (int)rv : -1; } #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) static const EVP_CIPHER aes_128_wrap = { NID_id_aes128_wrap, 8, 16, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL,NULL,NULL,NULL }; const EVP_CIPHER *EVP_aes_128_wrap(void) { return &aes_128_wrap; } static const EVP_CIPHER aes_192_wrap = { NID_id_aes192_wrap, 8, 24, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL,NULL,NULL,NULL }; const EVP_CIPHER *EVP_aes_192_wrap(void) { return &aes_192_wrap; } static const EVP_CIPHER aes_256_wrap = { NID_id_aes256_wrap, 8, 32, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL,NULL,NULL,NULL }; const EVP_CIPHER *EVP_aes_256_wrap(void) { return &aes_256_wrap; } #endif