/* crypto/bn/bn_exp.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include "cryptlib.h" #include "bn_lcl.h" #include #ifdef _WIN32 # include # ifndef alloca # define alloca _alloca # endif #elif defined(__GNUC__) # ifndef alloca # define alloca(s) __builtin_alloca((s)) # endif #elif defined(__sun) # include #endif #undef RSAZ_ENABLED #if defined(OPENSSL_BN_ASM_MONT) && \ (defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64)) # include "rsaz_exp.h" # define RSAZ_ENABLED #endif #undef SPARC_T4_MONT #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc)) # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_T4_MONT #endif /* maximum precomputation table size for *variable* sliding windows */ #define TABLE_SIZE 32 /* this one works - simple but works */ int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { int i,bits,ret=0; BIGNUM *v,*rr; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } BN_CTX_start(ctx); if ((r == a) || (r == p)) rr = BN_CTX_get(ctx); else rr = r; v = BN_CTX_get(ctx); if (rr == NULL || v == NULL) goto err; if (BN_copy(v,a) == NULL) goto err; bits=BN_num_bits(p); if (BN_is_odd(p)) { if (BN_copy(rr,a) == NULL) goto err; } else { if (!BN_one(rr)) goto err; } for (i=1; i= m. eay 07-May-97 */ /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ if (BN_is_odd(m)) { # ifdef MONT_EXP_WORD if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) { BN_ULONG A = a->d[0]; ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); } else # endif ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); } else #endif #ifdef RECP_MUL_MOD { ret=BN_mod_exp_recp(r,a,p,m,ctx); } #else { ret=BN_mod_exp_simple(r,a,p,m,ctx); } #endif bn_check_top(r); return(ret); } int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i,j,bits,ret=0,wstart,wend,window,wvalue; int start=1; BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_RECP_CTX recp; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } bits=BN_num_bits(p); if (bits == 0) { ret = BN_one(r); return ret; } BN_CTX_start(ctx); aa = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if(!aa || !val[0]) goto err; BN_RECP_CTX_init(&recp); if (m->neg) { /* ignore sign of 'm' */ if (!BN_copy(aa, m)) goto err; aa->neg = 0; if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; } else { if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; } if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) goto err; /* 2 */ j=1<<(window-1); for (i=1; i>1],&recp,ctx)) goto err; /* move the 'window' down further */ wstart-=wend+1; wvalue=0; start=0; if (wstart < 0) break; } ret=1; err: BN_CTX_end(ctx); BN_RECP_CTX_free(&recp); bn_check_top(r); return(ret); } int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i,j,bits,ret=0,wstart,wend,window,wvalue; int start=1; BIGNUM *d,*r; const BIGNUM *aa; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; BN_MONT_CTX *mont=NULL; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); } bn_check_top(a); bn_check_top(p); bn_check_top(m); if (!BN_is_odd(m)) { BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); return(0); } bits=BN_num_bits(p); if (bits == 0) { ret = BN_one(rr); return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); r = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if (!d || !r || !val[0]) goto err; /* If this is not done, things will break in the montgomery * part */ if (in_mont != NULL) mont=in_mont; else { if ((mont=BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; } if (a->neg || BN_ucmp(a,m) >= 0) { if (!BN_nnmod(val[0],a,m,ctx)) goto err; aa= val[0]; } else aa=a; if (BN_is_zero(aa)) { BN_zero(rr); ret = 1; goto err; } if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ j=1<<(window-1); for (i=1; itop; /* borrow j */ if (m->d[j-1] & (((BN_ULONG)1)<<(BN_BITS2-1))) { if (bn_wexpand(r,j) == NULL) goto err; /* 2^(top*BN_BITS2) - m */ r->d[0] = (0-m->d[0])&BN_MASK2; for(i=1;id[i] = (~m->d[i])&BN_MASK2; r->top = j; /* Upper words will be zero if the corresponding words of 'm' * were 0xfff[...], so decrement r->top accordingly. */ bn_correct_top(r); } else #endif if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; for (;;) { if (BN_is_bit_set(p,wstart) == 0) { if (!start) { if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; } if (wstart == 0) break; wstart--; continue; } /* We now have wstart on a 'set' bit, we now need to work out * how bit a window to do. To do this we need to scan * forward until the last set bit before the end of the * window */ j=wstart; wvalue=1; wend=0; for (i=1; i>1],mont,ctx)) goto err; /* move the 'window' down further */ wstart-=wend+1; wvalue=0; start=0; if (wstart < 0) break; } #if defined(SPARC_T4_MONT) if (OPENSSL_sparcv9cap_P[0]&(SPARCV9_VIS3|SPARCV9_PREFER_FPU)) { j = mont->N.top; /* borrow j */ val[0]->d[0] = 1; /* borrow val[0] */ for (i=1;id[i] = 0; val[0]->top = j; if (!BN_mod_mul_montgomery(rr,r,val[0],mont,ctx)) goto err; } else #endif if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; ret=1; err: if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return(ret); } #if defined(SPARC_T4_MONT) static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos) { BN_ULONG ret=0; int wordpos; wordpos = bitpos/BN_BITS2; bitpos %= BN_BITS2; if (wordpos>=0 && wordpos < a->top) { ret = a->d[wordpos]&BN_MASK2; if (bitpos) { ret >>= bitpos; if (++wordpos < a->top) ret |= a->d[wordpos]<<(BN_BITS2-bitpos); } } return ret&BN_MASK2; } #endif /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout * so that accessing any of these table values shows the same access pattern as far * as cache lines are concerned. The following functions are used to transfer a BIGNUM * from/to that table. */ static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int width) { size_t i, j; if (top > b->top) top = b->top; /* this works because 'buf' is explicitly zeroed */ for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) { buf[j] = ((unsigned char*)b->d)[i]; } return 1; } static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) { size_t i, j; if (bn_wexpand(b, top) == NULL) return 0; for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) { ((unsigned char*)b->d)[i] = buf[j]; } b->top = top; bn_correct_top(b); return 1; } /* Given a pointer value, compute the next address that is a cache line multiple. */ #define MOD_EXP_CTIME_ALIGN(x_) \ ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) /* This variant of BN_mod_exp_mont() uses fixed windows and the special * precomputation memory layout to limit data-dependency to a minimum * to protect secret exponents (cf. the hyper-threading timing attacks * pointed out by Colin Percival, * http://www.daemonology.net/hyperthreading-considered-harmful/) */ int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) { int i,bits,ret=0,window,wvalue; int top; BN_MONT_CTX *mont=NULL; int numPowers; unsigned char *powerbufFree=NULL; int powerbufLen = 0; unsigned char *powerbuf=NULL; BIGNUM tmp, am; #if defined(SPARC_T4_MONT) unsigned int t4=0; #endif bn_check_top(a); bn_check_top(p); bn_check_top(m); top = m->top; if (!(m->d[0] & 1)) { BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); return(0); } bits=BN_num_bits(p); if (bits == 0) { ret = BN_one(rr); return ret; } BN_CTX_start(ctx); /* Allocate a montgomery context if it was not supplied by the caller. * If this is not done, things will break in the montgomery part. */ if (in_mont != NULL) mont=in_mont; else { if ((mont=BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; } #ifdef RSAZ_ENABLED /* * If the size of the operands allow it, perform the optimized * RSAZ exponentiation. For further information see * crypto/bn/rsaz_exp.c and accompanying assembly modules. */ if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) && rsaz_avx2_eligible()) { if (NULL == bn_wexpand(rr, 16)) goto err; RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]); rr->top = 16; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) { if (NULL == bn_wexpand(rr,8)) goto err; RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d); rr->top = 8; rr->neg = 0; bn_correct_top(rr); ret = 1; goto err; } #endif /* Get the window size to use with size of p. */ window = BN_window_bits_for_ctime_exponent_size(bits); #if defined(SPARC_T4_MONT) if (window>=5 && (top&15)==0 && top<=64 && (OPENSSL_sparcv9cap_P[1]&(CFR_MONTMUL|CFR_MONTSQR))== (CFR_MONTMUL|CFR_MONTSQR) && (t4=OPENSSL_sparcv9cap_P[0])) window=5; else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window>=5) { window=5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */ if ((top&7)==0) powerbufLen += 2*top*sizeof(m->d[0]); } #endif (void)0; /* Allocate a buffer large enough to hold all of the pre-computed * powers of am, am itself and tmp. */ numPowers = 1 << window; powerbufLen += sizeof(m->d[0])*(top*numPowers + ((2*top)>numPowers?(2*top):numPowers)); #ifdef alloca if (powerbufLen < 3072) powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); else #endif if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) goto err; powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); memset(powerbuf, 0, powerbufLen); #ifdef alloca if (powerbufLen < 3072) powerbufFree = NULL; #endif /* lay down tmp and am right after powers table */ tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers); am.d = tmp.d + top; tmp.top = am.top = 0; tmp.dmax = am.dmax = top; tmp.neg = am.neg = 0; tmp.flags = am.flags = BN_FLG_STATIC_DATA; /* prepare a^0 in Montgomery domain */ #if 1 /* by Shay Gueron's suggestion */ if (m->d[top-1] & (((BN_ULONG)1)<<(BN_BITS2-1))) { /* 2^(top*BN_BITS2) - m */ tmp.d[0] = (0-m->d[0])&BN_MASK2; for (i=1;id[i])&BN_MASK2; tmp.top = top; } else #endif if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx)) goto err; /* prepare a^1 in Montgomery domain */ if (a->neg || BN_ucmp(a,m) >= 0) { if (!BN_mod(&am,a,m,ctx)) goto err; if (!BN_to_montgomery(&am,&am,mont,ctx)) goto err; } else if (!BN_to_montgomery(&am,a,mont,ctx)) goto err; #if defined(SPARC_T4_MONT) if (t4) { typedef int (*bn_pwr5_mont_f)(BN_ULONG *tp,const BN_ULONG *np, const BN_ULONG *n0,const void *table,int power,int bits); int bn_pwr5_mont_t4_8(BN_ULONG *tp,const BN_ULONG *np, const BN_ULONG *n0,const void *table,int power,int bits); int bn_pwr5_mont_t4_16(BN_ULONG *tp,const BN_ULONG *np, const BN_ULONG *n0,const void *table,int power,int bits); int bn_pwr5_mont_t4_24(BN_ULONG *tp,const BN_ULONG *np, const BN_ULONG *n0,const void *table,int power,int bits); int bn_pwr5_mont_t4_32(BN_ULONG *tp,const BN_ULONG *np, const BN_ULONG *n0,const void *table,int power,int bits); static const bn_pwr5_mont_f pwr5_funcs[4] = { bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16, bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32 }; bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top/16-1]; typedef int (*bn_mul_mont_f)(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np,const BN_ULONG *n0); int bn_mul_mont_t4_8(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np,const BN_ULONG *n0); int bn_mul_mont_t4_16(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np,const BN_ULONG *n0); int bn_mul_mont_t4_24(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np,const BN_ULONG *n0); int bn_mul_mont_t4_32(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np,const BN_ULONG *n0); static const bn_mul_mont_f mul_funcs[4] = { bn_mul_mont_t4_8, bn_mul_mont_t4_16, bn_mul_mont_t4_24, bn_mul_mont_t4_32 }; bn_mul_mont_f mul_worker = mul_funcs[top/16-1]; void bn_mul_mont_vis3(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np, const BN_ULONG *n0,int num); void bn_mul_mont_t4(BN_ULONG *rp,const BN_ULONG *ap, const void *bp,const BN_ULONG *np, const BN_ULONG *n0,int num); void bn_mul_mont_gather5_t4(BN_ULONG *rp,const BN_ULONG *ap, const void *table,const BN_ULONG *np, const BN_ULONG *n0,int num,int power); void bn_flip_n_scatter5_t4(const BN_ULONG *inp,size_t num, void *table,size_t power); void bn_gather5_t4(BN_ULONG *out,size_t num, void *table,size_t power); void bn_flip_t4(BN_ULONG *dst,BN_ULONG *src,size_t num); BN_ULONG *np=mont->N.d, *n0=mont->n0; int stride = 5*(6-(top/16-1)); /* multiple of 5, but less than 32 */ /* BN_to_montgomery can contaminate words above .top * [in BN_DEBUG[_DEBUG] build]... */ for (i=am.top; iN.d,top); bits--; for (wvalue=0, i=bits%5; i>=0; i--,bits--) wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); bn_gather5_t4(tmp.d,top,powerbuf,wvalue); /* Scan the exponent one window at a time starting from the most * significant bits. */ while (bits >= 0) { if (bits < stride) stride = bits+1; bits -= stride; wvalue = bn_get_bits(p,bits+1); if ((*pwr5_worker)(tmp.d,np,n0,powerbuf,wvalue,stride)) continue; /* retry once and fall back */ if ((*pwr5_worker)(tmp.d,np,n0,powerbuf,wvalue,stride)) continue; bits += stride-5; wvalue >>= stride-5; wvalue &= 31; bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_t4(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_gather5_t4(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue); } bn_flip_t4(tmp.d,tmp.d,top); top *= 2; /* back to 32-bit domain */ tmp.top=top; bn_correct_top(&tmp); OPENSSL_cleanse(np,top*sizeof(BN_ULONG)); } else #endif #if defined(OPENSSL_BN_ASM_MONT5) if (window==5 && top>1) { /* This optimization uses ideas from http://eprint.iacr.org/2011/239, * specifically optimization of cache-timing attack countermeasures * and pre-computation optimization. */ /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as * 512-bit RSA is hardly relevant, we omit it to spare size... */ void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap, const void *table,const BN_ULONG *np, const BN_ULONG *n0,int num,int power); void bn_scatter5(const BN_ULONG *inp,size_t num, void *table,size_t power); void bn_gather5(BN_ULONG *out,size_t num, void *table,size_t power); void bn_power5(BN_ULONG *rp,const BN_ULONG *ap, const void *table,const BN_ULONG *np, const BN_ULONG *n0,int num,int power); int bn_get_bits5(const BN_ULONG *ap,int off); int bn_from_montgomery(BN_ULONG *rp,const BN_ULONG *ap, const BN_ULONG *not_used,const BN_ULONG *np, const BN_ULONG *n0,int num); BN_ULONG *np=mont->N.d, *n0=mont->n0, *np2; /* BN_to_montgomery can contaminate words above .top * [in BN_DEBUG[_DEBUG] build]... */ for (i=am.top; i=0; i--,bits--) wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); bn_gather5(tmp.d,top,powerbuf,wvalue); /* Scan the exponent one window at a time starting from the most * significant bits. */ if (top&7) while (bits >= 0) { for (wvalue=0, i=0; i<5; i++,bits--) wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue); } else { while (bits >= 0) { wvalue = bn_get_bits5(p->d,bits-4); bits-=5; bn_power5(tmp.d,tmp.d,powerbuf,np2,n0,top,wvalue); } } ret=bn_from_montgomery(tmp.d,tmp.d,NULL,np2,n0,top); tmp.top=top; bn_correct_top(&tmp); if (ret) { if (!BN_copy(rr,&tmp)) ret=0; goto err; /* non-zero ret means it's not error */ } } else #endif { if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, numPowers)) goto err; /* If the window size is greater than 1, then calculate * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) * (even powers could instead be computed as (a^(i/2))^2 * to use the slight performance advantage of sqr over mul). */ if (window > 1) { if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx)) goto err; if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPowers)) goto err; for (i=3; i=0; i--,bits--) wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers)) goto err; /* Scan the exponent one window at a time starting from the most * significant bits. */ while (bits >= 0) { wvalue=0; /* The 'value' of the window */ /* Scan the window, squaring the result as we go */ for (i=0; itop == 1) a %= m->d[0]; /* make sure that 'a' is reduced */ bits = BN_num_bits(p); if (bits == 0) { /* x**0 mod 1 is still zero. */ if (BN_is_one(m)) { ret = 1; BN_zero(rr); } else ret = BN_one(rr); return ret; } if (a == 0) { BN_zero(rr); ret = 1; return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); r = BN_CTX_get(ctx); t = BN_CTX_get(ctx); if (d == NULL || r == NULL || t == NULL) goto err; if (in_mont != NULL) mont=in_mont; else { if ((mont = BN_MONT_CTX_new()) == NULL) goto err; if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; } r_is_one = 1; /* except for Montgomery factor */ /* bits-1 >= 0 */ /* The result is accumulated in the product r*w. */ w = a; /* bit 'bits-1' of 'p' is always set */ for (b = bits-2; b >= 0; b--) { /* First, square r*w. */ next_w = w*w; if ((next_w/w) != w) /* overflow */ { if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = 1; } w = next_w; if (!r_is_one) { if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; } /* Second, multiply r*w by 'a' if exponent bit is set. */ if (BN_is_bit_set(p, b)) { next_w = w*a; if ((next_w/a) != w) /* overflow */ { if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } next_w = a; } w = next_w; } } /* Finally, set r:=r*w. */ if (w != 1) { if (r_is_one) { if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; r_is_one = 0; } else { if (!BN_MOD_MUL_WORD(r, w, m)) goto err; } } if (r_is_one) /* can happen only if a == 1*/ { if (!BN_one(rr)) goto err; } else { if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; } ret = 1; err: if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); BN_CTX_end(ctx); bn_check_top(rr); return(ret); } /* The old fallback, simple version :-) */ int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { int i,j,bits,ret=0,wstart,wend,window,wvalue; int start=1; BIGNUM *d; /* Table of variables obtained from 'ctx' */ BIGNUM *val[TABLE_SIZE]; if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return -1; } bits=BN_num_bits(p); if (bits == 0) { ret = BN_one(r); return ret; } BN_CTX_start(ctx); d = BN_CTX_get(ctx); val[0] = BN_CTX_get(ctx); if(!d || !val[0]) goto err; if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ if (BN_is_zero(val[0])) { BN_zero(r); ret = 1; goto err; } window = BN_window_bits_for_exponent_size(bits); if (window > 1) { if (!BN_mod_mul(d,val[0],val[0],m,ctx)) goto err; /* 2 */ j=1<<(window-1); for (i=1; i>1],m,ctx)) goto err; /* move the 'window' down further */ wstart-=wend+1; wvalue=0; start=0; if (wstart < 0) break; } ret=1; err: BN_CTX_end(ctx); bn_check_top(r); return(ret); }