/* crypto/bio/bio_dgram.c */ /* * DTLS implementation written by Nagendra Modadugu * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. */ /* ==================================================================== * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #define USE_SOCKETS #include "cryptlib.h" #include #ifndef OPENSSL_NO_DGRAM # if !(defined(_WIN32) || defined(OPENSSL_SYS_VMS)) # include # endif # if defined(OPENSSL_SYS_VMS) # include # endif # ifndef OPENSSL_NO_SCTP # include # include # define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00 # define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0 # endif # if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU) # define IP_MTU 14 /* linux is lame */ # endif # if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6) # define IPPROTO_IPV6 41 /* windows is lame */ # endif # if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED) /* Standard definition causes type-punning problems. */ # undef IN6_IS_ADDR_V4MAPPED # define s6_addr32 __u6_addr.__u6_addr32 # define IN6_IS_ADDR_V4MAPPED(a) \ (((a)->s6_addr32[0] == 0) && \ ((a)->s6_addr32[1] == 0) && \ ((a)->s6_addr32[2] == htonl(0x0000ffff))) # endif # ifdef WATT32 # define sock_write SockWrite /* Watt-32 uses same names */ # define sock_read SockRead # define sock_puts SockPuts # endif static int dgram_write(BIO *h, const char *buf, int num); static int dgram_read(BIO *h, char *buf, int size); static int dgram_puts(BIO *h, const char *str); static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int dgram_new(BIO *h); static int dgram_free(BIO *data); static int dgram_clear(BIO *bio); # ifndef OPENSSL_NO_SCTP static int dgram_sctp_write(BIO *h, const char *buf, int num); static int dgram_sctp_read(BIO *h, char *buf, int size); static int dgram_sctp_puts(BIO *h, const char *str); static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2); static int dgram_sctp_new(BIO *h); static int dgram_sctp_free(BIO *data); # ifdef SCTP_AUTHENTICATION_EVENT static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp); # endif # endif static int BIO_dgram_should_retry(int s); static void get_current_time(struct timeval *t); static BIO_METHOD methods_dgramp = { BIO_TYPE_DGRAM, "datagram socket", dgram_write, dgram_read, dgram_puts, NULL, /* dgram_gets, */ dgram_ctrl, dgram_new, dgram_free, NULL, }; # ifndef OPENSSL_NO_SCTP static BIO_METHOD methods_dgramp_sctp = { BIO_TYPE_DGRAM_SCTP, "datagram sctp socket", dgram_sctp_write, dgram_sctp_read, dgram_sctp_puts, NULL, /* dgram_gets, */ dgram_sctp_ctrl, dgram_sctp_new, dgram_sctp_free, NULL, }; # endif typedef struct bio_dgram_data_st { union { struct sockaddr sa; struct sockaddr_in sa_in; # if OPENSSL_USE_IPV6 struct sockaddr_in6 sa_in6; # endif } peer; unsigned int connected; unsigned int _errno; unsigned int mtu; struct timeval next_timeout; struct timeval socket_timeout; } bio_dgram_data; # ifndef OPENSSL_NO_SCTP typedef struct bio_dgram_sctp_save_message_st { BIO *bio; char *data; int length; } bio_dgram_sctp_save_message; typedef struct bio_dgram_sctp_data_st { union { struct sockaddr sa; struct sockaddr_in sa_in; # if OPENSSL_USE_IPV6 struct sockaddr_in6 sa_in6; # endif } peer; unsigned int connected; unsigned int _errno; unsigned int mtu; struct bio_dgram_sctp_sndinfo sndinfo; struct bio_dgram_sctp_rcvinfo rcvinfo; struct bio_dgram_sctp_prinfo prinfo; void (*handle_notifications) (BIO *bio, void *context, void *buf); void *notification_context; int in_handshake; int ccs_rcvd; int ccs_sent; int save_shutdown; int peer_auth_tested; bio_dgram_sctp_save_message saved_message; } bio_dgram_sctp_data; # endif BIO_METHOD *BIO_s_datagram(void) { return (&methods_dgramp); } BIO *BIO_new_dgram(int fd, int close_flag) { BIO *ret; ret = BIO_new(BIO_s_datagram()); if (ret == NULL) return (NULL); BIO_set_fd(ret, fd, close_flag); return (ret); } static int dgram_new(BIO *bi) { bio_dgram_data *data = NULL; bi->init = 0; bi->num = 0; data = OPENSSL_malloc(sizeof(*data)); if (data == NULL) return 0; memset(data, 0, sizeof(*data)); bi->ptr = data; bi->flags = 0; return (1); } static int dgram_free(BIO *a) { bio_dgram_data *data; if (a == NULL) return (0); if (!dgram_clear(a)) return 0; data = (bio_dgram_data *)a->ptr; OPENSSL_free(data); return (1); } static int dgram_clear(BIO *a) { if (a == NULL) return (0); if (a->shutdown) { if (a->init) { SHUTDOWN2(a->num); } a->init = 0; a->flags = 0; } return (1); } static void dgram_adjust_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; union { size_t s; int i; } sz = { 0 }; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { struct timeval timenow, timeleft; /* Read current socket timeout */ # ifdef OPENSSL_SYS_WINDOWS int timeout; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); } else { data->socket_timeout.tv_sec = timeout / 1000; data->socket_timeout.tv_usec = (timeout % 1000) * 1000; } # else sz.i = sizeof(data->socket_timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), (void *)&sz) < 0) { perror("getsockopt"); } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) OPENSSL_assert(sz.s <= sizeof(data->socket_timeout)); # endif /* Get current time */ get_current_time(&timenow); /* Calculate time left until timer expires */ memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval)); timeleft.tv_sec -= timenow.tv_sec; timeleft.tv_usec -= timenow.tv_usec; if (timeleft.tv_usec < 0) { timeleft.tv_sec--; timeleft.tv_usec += 1000000; } if (timeleft.tv_sec < 0) { timeleft.tv_sec = 0; timeleft.tv_usec = 1; } /* * Adjust socket timeout if next handhake message timer will expire * earlier. */ if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv_usec == 0) || (data->socket_timeout.tv_sec > timeleft.tv_sec) || (data->socket_timeout.tv_sec == timeleft.tv_sec && data->socket_timeout.tv_usec >= timeleft.tv_usec)) { # ifdef OPENSSL_SYS_WINDOWS timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft, sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } } # endif } static void dgram_reset_rcv_timeout(BIO *b) { # if defined(SO_RCVTIMEO) bio_dgram_data *data = (bio_dgram_data *)b->ptr; /* Is a timer active? */ if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) { # ifdef OPENSSL_SYS_WINDOWS int timeout = data->socket_timeout.tv_sec * 1000 + data->socket_timeout.tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); } # else if (setsockopt (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout), sizeof(struct timeval)) < 0) { perror("setsockopt"); } # endif } # endif } static int dgram_read(BIO *b, char *out, int outl) { int ret = 0; bio_dgram_data *data = (bio_dgram_data *)b->ptr; struct { /* * See commentary in b_sock.c. */ union { size_t s; int i; } len; union { struct sockaddr sa; struct sockaddr_in sa_in; # if OPENSSL_USE_IPV6 struct sockaddr_in6 sa_in6; # endif } peer; } sa; sa.len.s = 0; sa.len.i = sizeof(sa.peer); if (out != NULL) { clear_socket_error(); memset(&sa.peer, 0, sizeof(sa.peer)); dgram_adjust_rcv_timeout(b); ret = recvfrom(b->num, out, outl, 0, &sa.peer.sa, (void *)&sa.len); if (sizeof(sa.len.i) != sizeof(sa.len.s) && sa.len.i == 0) { OPENSSL_assert(sa.len.s <= sizeof(sa.peer)); sa.len.i = (int)sa.len.s; } if (!data->connected && ret >= 0) BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer); BIO_clear_retry_flags(b); if (ret < 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_read(b); data->_errno = get_last_socket_error(); } } dgram_reset_rcv_timeout(b); } return (ret); } static int dgram_write(BIO *b, const char *in, int inl) { int ret; bio_dgram_data *data = (bio_dgram_data *)b->ptr; clear_socket_error(); if (data->connected) ret = writesocket(b->num, in, inl); else { int peerlen = sizeof(data->peer); if (data->peer.sa.sa_family == AF_INET) peerlen = sizeof(data->peer.sa_in); # if OPENSSL_USE_IPV6 else if (data->peer.sa.sa_family == AF_INET6) peerlen = sizeof(data->peer.sa_in6); # endif # if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK) ret = sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen); # else ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen); # endif } BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_write(b); data->_errno = get_last_socket_error(); } } return (ret); } static long dgram_get_mtu_overhead(bio_dgram_data *data) { long ret; switch (data->peer.sa.sa_family) { case AF_INET: /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; break; # if OPENSSL_USE_IPV6 case AF_INET6: # ifdef IN6_IS_ADDR_V4MAPPED if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr)) /* * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP */ ret = 28; else # endif /* * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP */ ret = 48; break; # endif default: /* We don't know. Go with the historical default */ ret = 28; break; } return ret; } static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; int *ip; struct sockaddr *to = NULL; bio_dgram_data *data = NULL; int sockopt_val = 0; # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU)) socklen_t sockopt_len; /* assume that system supporting IP_MTU is * modern enough to define socklen_t */ socklen_t addr_len; union { struct sockaddr sa; struct sockaddr_in s4; # if OPENSSL_USE_IPV6 struct sockaddr_in6 s6; # endif } addr; # endif data = (bio_dgram_data *)b->ptr; switch (cmd) { case BIO_CTRL_RESET: num = 0; case BIO_C_FILE_SEEK: ret = 0; break; case BIO_C_FILE_TELL: case BIO_CTRL_INFO: ret = 0; break; case BIO_C_SET_FD: dgram_clear(b); b->num = *((int *)ptr); b->shutdown = (int)num; b->init = 1; break; case BIO_C_GET_FD: if (b->init) { ip = (int *)ptr; if (ip != NULL) *ip = b->num; ret = b->num; } else ret = -1; break; case BIO_CTRL_GET_CLOSE: ret = b->shutdown; break; case BIO_CTRL_SET_CLOSE: b->shutdown = (int)num; break; case BIO_CTRL_PENDING: case BIO_CTRL_WPENDING: ret = 0; break; case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; case BIO_CTRL_DGRAM_CONNECT: to = (struct sockaddr *)ptr; switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } break; /* (Linux)kernel sets DF bit on outgoing IP packets */ case BIO_CTRL_DGRAM_MTU_DISCOVER: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO) addr_len = (socklen_t) sizeof(addr); memset(&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } switch (addr.sa.sa_family) { case AF_INET: sockopt_val = IP_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO) case AF_INET6: sockopt_val = IPV6_PMTUDISC_DO; if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) perror("setsockopt"); break; # endif default: ret = -1; break; } # else ret = -1; # endif break; case BIO_CTRL_DGRAM_QUERY_MTU: # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU) addr_len = (socklen_t) sizeof(addr); memset(&addr, 0, sizeof(addr)); if (getsockname(b->num, &addr.sa, &addr_len) < 0) { ret = 0; break; } sockopt_len = sizeof(sockopt_val); switch (addr.sa.sa_family) { case AF_INET: if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IP * options are used. */ data->mtu = sockopt_val - 8 - 20; ret = data->mtu; } break; # if OPENSSL_USE_IPV6 && defined(IPV6_MTU) case AF_INET6: if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (void *)&sockopt_val, &sockopt_len)) < 0 || sockopt_val < 0) { ret = 0; } else { /* * we assume that the transport protocol is UDP and no IPV6 * options are used. */ data->mtu = sockopt_val - 8 - 40; ret = data->mtu; } break; # endif default: ret = 0; break; } # else ret = 0; # endif break; case BIO_CTRL_DGRAM_GET_FALLBACK_MTU: ret = -dgram_get_mtu_overhead(data); switch (data->peer.sa.sa_family) { case AF_INET: ret += 576; break; # if OPENSSL_USE_IPV6 case AF_INET6: # ifdef IN6_IS_ADDR_V4MAPPED if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr)) ret += 576; else # endif ret += 1280; break; # endif default: ret += 576; break; } break; case BIO_CTRL_DGRAM_GET_MTU: return data->mtu; case BIO_CTRL_DGRAM_SET_MTU: data->mtu = num; ret = num; break; case BIO_CTRL_DGRAM_SET_CONNECTED: to = (struct sockaddr *)ptr; if (to != NULL) { data->connected = 1; switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } } else { data->connected = 0; memset(&data->peer, 0, sizeof(data->peer)); } break; case BIO_CTRL_DGRAM_GET_PEER: switch (data->peer.sa.sa_family) { case AF_INET: ret = sizeof(data->peer.sa_in); break; # if OPENSSL_USE_IPV6 case AF_INET6: ret = sizeof(data->peer.sa_in6); break; # endif default: ret = sizeof(data->peer.sa); break; } if (num == 0 || num > ret) num = ret; memcpy(ptr, &data->peer, (ret = num)); break; case BIO_CTRL_DGRAM_SET_PEER: to = (struct sockaddr *)ptr; switch (to->sa_family) { case AF_INET: memcpy(&data->peer, to, sizeof(data->peer.sa_in)); break; # if OPENSSL_USE_IPV6 case AF_INET6: memcpy(&data->peer, to, sizeof(data->peer.sa_in6)); break; # endif default: memcpy(&data->peer, to, sizeof(data->peer.sa)); break; } break; case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT: memcpy(&(data->next_timeout), ptr, sizeof(struct timeval)); break; # if defined(SO_RCVTIMEO) case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif # if defined(SO_SNDTIMEO) case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT: # ifdef OPENSSL_SYS_WINDOWS { struct timeval *tv = (struct timeval *)ptr; int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000; if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, sizeof(timeout)) < 0) { perror("setsockopt"); ret = -1; } } # else if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, sizeof(struct timeval)) < 0) { perror("setsockopt"); ret = -1; } # endif break; case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT: { union { size_t s; int i; } sz = { 0 }; # ifdef OPENSSL_SYS_WINDOWS int timeout; struct timeval *tv = (struct timeval *)ptr; sz.i = sizeof(timeout); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, (void *)&timeout, &sz.i) < 0) { perror("getsockopt"); ret = -1; } else { tv->tv_sec = timeout / 1000; tv->tv_usec = (timeout % 1000) * 1000; ret = sizeof(*tv); } # else sz.i = sizeof(struct timeval); if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr, (void *)&sz) < 0) { perror("getsockopt"); ret = -1; } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) { OPENSSL_assert(sz.s <= sizeof(struct timeval)); ret = (int)sz.s; } else ret = sz.i; # endif } break; # endif case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP: /* fall-through */ case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP: # ifdef OPENSSL_SYS_WINDOWS if (data->_errno == WSAETIMEDOUT) # else if (data->_errno == EAGAIN) # endif { ret = 1; data->_errno = 0; } else ret = 0; break; # ifdef EMSGSIZE case BIO_CTRL_DGRAM_MTU_EXCEEDED: if (data->_errno == EMSGSIZE) { ret = 1; data->_errno = 0; } else ret = 0; break; # endif case BIO_CTRL_DGRAM_SET_DONT_FRAG: sockopt_val = num ? 1 : 0; switch (data->peer.sa.sa_family) { case AF_INET: # if defined(IP_DONTFRAG) if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTUDISCOVER) if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT), (ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT) if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT, (const char *)&sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # else ret = -1; # endif break; # if OPENSSL_USE_IPV6 case AF_INET6: # if defined(IPV6_DONTFRAG) if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG, (const void *)&sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER) if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT), (ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &sockopt_val, sizeof(sockopt_val))) < 0) { perror("setsockopt"); ret = -1; } # else ret = -1; # endif break; # endif default: ret = -1; break; } break; case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD: ret = dgram_get_mtu_overhead(data); break; default: ret = 0; break; } return (ret); } static int dgram_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = dgram_write(bp, str, n); return (ret); } # ifndef OPENSSL_NO_SCTP BIO_METHOD *BIO_s_datagram_sctp(void) { return (&methods_dgramp_sctp); } BIO *BIO_new_dgram_sctp(int fd, int close_flag) { BIO *bio; int ret, optval = 20000; int auth_data = 0, auth_forward = 0; unsigned char *p; struct sctp_authchunk auth; struct sctp_authchunks *authchunks; socklen_t sockopt_len; # ifdef SCTP_AUTHENTICATION_EVENT # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; # endif # endif bio = BIO_new(BIO_s_datagram_sctp()); if (bio == NULL) return (NULL); BIO_set_fd(bio, fd, close_flag); /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */ auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk)); if (ret < 0) { BIO_vfree(bio); return (NULL); } auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk)); if (ret < 0) { BIO_vfree(bio); return (NULL); } /* * Test if activation was successful. When using accept(), SCTP-AUTH has * to be activated for the listening socket already, otherwise the * connected socket won't use it. */ sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t)); authchunks = OPENSSL_malloc(sockopt_len); if (!authchunks) { BIO_vfree(bio); return (NULL); } memset(authchunks, 0, sockopt_len); ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks, &sockopt_len); if (ret < 0) { OPENSSL_free(authchunks); BIO_vfree(bio); return (NULL); } for (p = (unsigned char *)authchunks->gauth_chunks; p < (unsigned char *)authchunks + sockopt_len; p += sizeof(uint8_t)) { if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1; if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1; } OPENSSL_free(authchunks); OPENSSL_assert(auth_data); OPENSSL_assert(auth_forward); # ifdef SCTP_AUTHENTICATION_EVENT # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_AUTHENTICATION_EVENT; event.se_on = 1; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); if (ret < 0) { BIO_vfree(bio); return (NULL); } # else sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe); ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len); if (ret < 0) { BIO_vfree(bio); return (NULL); } event.sctp_authentication_event = 1; ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); if (ret < 0) { BIO_vfree(bio); return (NULL); } # endif # endif /* * Disable partial delivery by setting the min size larger than the max * record size of 2^14 + 2048 + 13 */ ret = setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval, sizeof(optval)); if (ret < 0) { BIO_vfree(bio); return (NULL); } return (bio); } int BIO_dgram_is_sctp(BIO *bio) { return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP); } static int dgram_sctp_new(BIO *bi) { bio_dgram_sctp_data *data = NULL; bi->init = 0; bi->num = 0; data = OPENSSL_malloc(sizeof(*data)); if (data == NULL) return 0; memset(data, 0, sizeof(*data)); # ifdef SCTP_PR_SCTP_NONE data->prinfo.pr_policy = SCTP_PR_SCTP_NONE; # endif bi->ptr = data; bi->flags = 0; return (1); } static int dgram_sctp_free(BIO *a) { bio_dgram_sctp_data *data; if (a == NULL) return (0); if (!dgram_clear(a)) return 0; data = (bio_dgram_sctp_data *) a->ptr; if (data != NULL) { OPENSSL_free(data->saved_message.data); OPENSSL_free(data); } return (1); } # ifdef SCTP_AUTHENTICATION_EVENT void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp) { int ret; struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event; if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) { struct sctp_authkeyid authkeyid; /* delete key */ authkeyid.scact_keynumber = authkeyevent->auth_keynumber; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); } } # endif static int dgram_sctp_read(BIO *b, char *out, int outl) { int ret = 0, n = 0, i, optval; socklen_t optlen; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; union sctp_notification *snp; struct msghdr msg; struct iovec iov; struct cmsghdr *cmsg; char cmsgbuf[512]; if (out != NULL) { clear_socket_error(); do { memset(&data->rcvinfo, 0, sizeof(data->rcvinfo)); iov.iov_base = out; iov.iov_len = outl; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = cmsgbuf; msg.msg_controllen = 512; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (n <= 0) { if (n < 0) ret = n; break; } if (msg.msg_controllen > 0) { for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level != IPPROTO_SCTP) continue; # ifdef SCTP_RCVINFO if (cmsg->cmsg_type == SCTP_RCVINFO) { struct sctp_rcvinfo *rcvinfo; rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg); data->rcvinfo.rcv_sid = rcvinfo->rcv_sid; data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn; data->rcvinfo.rcv_flags = rcvinfo->rcv_flags; data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid; data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn; data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn; data->rcvinfo.rcv_context = rcvinfo->rcv_context; } # endif # ifdef SCTP_SNDRCV if (cmsg->cmsg_type == SCTP_SNDRCV) { struct sctp_sndrcvinfo *sndrcvinfo; sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream; data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn; data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags; data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid; data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn; data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn; data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context; } # endif } } if (msg.msg_flags & MSG_NOTIFICATION) { snp = (union sctp_notification *)out; if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT) { # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; socklen_t eventsize; # endif /* * If a message has been delayed until the socket is dry, * it can be sent now. */ if (data->saved_message.length > 0) { dgram_sctp_write(data->saved_message.bio, data->saved_message.data, data->saved_message.length); OPENSSL_free(data->saved_message.data); data->saved_message.data = NULL; data->saved_message.length = 0; } /* disable sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 0; i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); if (i < 0) { ret = i; break; } # else eventsize = sizeof(struct sctp_event_subscribe); i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (i < 0) { ret = i; break; } event.sctp_sender_dry_event = 0; i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); if (i < 0) { ret = i; break; } # endif } # ifdef SCTP_AUTHENTICATION_EVENT if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, snp); # endif if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)out); memset(out, 0, outl); } else ret += n; } while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR) && (ret < outl)); if (ret > 0 && !(msg.msg_flags & MSG_EOR)) { /* Partial message read, this should never happen! */ /* * The buffer was too small, this means the peer sent a message * that was larger than allowed. */ if (ret == outl) return -1; /* * Test if socket buffer can handle max record size (2^14 + 2048 * + 13) */ optlen = (socklen_t) sizeof(int); ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen); if (ret >= 0) OPENSSL_assert(optval >= 18445); /* * Test if SCTP doesn't partially deliver below max record size * (2^14 + 2048 + 13) */ optlen = (socklen_t) sizeof(int); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval, &optlen); if (ret >= 0) OPENSSL_assert(optval >= 18445); /* * Partially delivered notification??? Probably a bug.... */ OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION)); /* * Everything seems ok till now, so it's most likely a message * dropped by PR-SCTP. */ memset(out, 0, outl); BIO_set_retry_read(b); return -1; } BIO_clear_retry_flags(b); if (ret < 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_read(b); data->_errno = get_last_socket_error(); } } /* Test if peer uses SCTP-AUTH before continuing */ if (!data->peer_auth_tested) { int ii, auth_data = 0, auth_forward = 0; unsigned char *p; struct sctp_authchunks *authchunks; optlen = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t)); authchunks = OPENSSL_malloc(optlen); if (!authchunks) { BIOerr(BIO_F_DGRAM_SCTP_READ, ERR_R_MALLOC_FAILURE); return -1; } memset(authchunks, 0, optlen); ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS, authchunks, &optlen); if (ii >= 0) for (p = (unsigned char *)authchunks->gauth_chunks; p < (unsigned char *)authchunks + optlen; p += sizeof(uint8_t)) { if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1; if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1; } OPENSSL_free(authchunks); if (!auth_data || !auth_forward) { BIOerr(BIO_F_DGRAM_SCTP_READ, BIO_R_CONNECT_ERROR); return -1; } data->peer_auth_tested = 1; } } return (ret); } static int dgram_sctp_write(BIO *b, const char *in, int inl) { int ret; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo); struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo); struct bio_dgram_sctp_sndinfo handshake_sinfo; struct iovec iov[1]; struct msghdr msg; struct cmsghdr *cmsg; # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO) char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) + CMSG_SPACE(sizeof(struct sctp_prinfo))]; struct sctp_sndinfo *sndinfo; struct sctp_prinfo *prinfo; # else char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; struct sctp_sndrcvinfo *sndrcvinfo; # endif clear_socket_error(); /* * If we're send anything else than application data, disable all user * parameters and flags. */ if (in[0] != 23) { memset(&handshake_sinfo, 0, sizeof(handshake_sinfo)); # ifdef SCTP_SACK_IMMEDIATELY handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY; # endif sinfo = &handshake_sinfo; } /* * If we have to send a shutdown alert message and the socket is not dry * yet, we have to save it and send it as soon as the socket gets dry. */ if (data->save_shutdown && !BIO_dgram_sctp_wait_for_dry(b)) { char *tmp; data->saved_message.bio = b; if ((tmp = OPENSSL_malloc(inl)) == NULL) { BIOerr(BIO_F_DGRAM_SCTP_WRITE, ERR_R_MALLOC_FAILURE); return -1; } OPENSSL_free(data->saved_message.data); data->saved_message.data = tmp; memcpy(data->saved_message.data, in, inl); data->saved_message.length = inl; return inl; } iov[0].iov_base = (char *)in; iov[0].iov_len = inl; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = (caddr_t) cmsgbuf; msg.msg_controllen = 0; msg.msg_flags = 0; # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO) cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_SNDINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo)); sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg); memset(sndinfo, 0, sizeof(*sndinfo)); sndinfo->snd_sid = sinfo->snd_sid; sndinfo->snd_flags = sinfo->snd_flags; sndinfo->snd_ppid = sinfo->snd_ppid; sndinfo->snd_context = sinfo->snd_context; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo)); cmsg = (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))]; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_PRINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo)); prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg); memset(prinfo, 0, sizeof(*prinfo)); prinfo->pr_policy = pinfo->pr_policy; prinfo->pr_value = pinfo->pr_value; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo)); # else cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_SNDRCV; cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); memset(sndrcvinfo, 0, sizeof(*sndrcvinfo)); sndrcvinfo->sinfo_stream = sinfo->snd_sid; sndrcvinfo->sinfo_flags = sinfo->snd_flags; # ifdef __FreeBSD__ sndrcvinfo->sinfo_flags |= pinfo->pr_policy; # endif sndrcvinfo->sinfo_ppid = sinfo->snd_ppid; sndrcvinfo->sinfo_context = sinfo->snd_context; sndrcvinfo->sinfo_timetolive = pinfo->pr_value; msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)); # endif ret = sendmsg(b->num, &msg, 0); BIO_clear_retry_flags(b); if (ret <= 0) { if (BIO_dgram_should_retry(ret)) { BIO_set_retry_write(b); data->_errno = get_last_socket_error(); } } return (ret); } static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr) { long ret = 1; bio_dgram_sctp_data *data = NULL; socklen_t sockopt_len = 0; struct sctp_authkeyid authkeyid; struct sctp_authkey *authkey = NULL; data = (bio_dgram_sctp_data *) b->ptr; switch (cmd) { case BIO_CTRL_DGRAM_QUERY_MTU: /* * Set to maximum (2^14) and ignore user input to enable transport * protocol fragmentation. Returns always 2^14. */ data->mtu = 16384; ret = data->mtu; break; case BIO_CTRL_DGRAM_SET_MTU: /* * Set to maximum (2^14) and ignore input to enable transport * protocol fragmentation. Returns always 2^14. */ data->mtu = 16384; ret = data->mtu; break; case BIO_CTRL_DGRAM_SET_CONNECTED: case BIO_CTRL_DGRAM_CONNECT: /* Returns always -1. */ ret = -1; break; case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT: /* * SCTP doesn't need the DTLS timer Returns always 1. */ break; case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD: /* * We allow transport protocol fragmentation so this is irrelevant */ ret = 0; break; case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE: if (num > 0) data->in_handshake = 1; else data->in_handshake = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY, &data->in_handshake, sizeof(int)); break; case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY: /* * New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise. */ /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* Add new key */ sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t); authkey = OPENSSL_malloc(sockopt_len); if (authkey == NULL) { ret = -1; break; } memset(authkey, 0, sockopt_len); authkey->sca_keynumber = authkeyid.scact_keynumber + 1; # ifndef __FreeBSD__ /* * This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3 * and higher work without it. */ authkey->sca_keylength = 64; # endif memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t)); ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey, sockopt_len); OPENSSL_free(authkey); authkey = NULL; if (ret < 0) break; /* Reset active key */ ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; break; case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY: /* Returns 0 on success, -1 otherwise. */ /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* Set active key */ authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; /* * CCS has been sent, so remember that and fall through to check if * we need to deactivate an old key */ data->ccs_sent = 1; case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD: /* Returns 0 on success, -1 otherwise. */ /* * Has this command really been called or is this just a * fall-through? */ if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD) data->ccs_rcvd = 1; /* * CSS has been both, received and sent, so deactivate an old key */ if (data->ccs_rcvd == 1 && data->ccs_sent == 1) { /* Get active key */ sockopt_len = sizeof(struct sctp_authkeyid); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len); if (ret < 0) break; /* * Deactivate key or delete second last key if * SCTP_AUTHENTICATION_EVENT is not available. */ authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1; # ifdef SCTP_AUTH_DEACTIVATE_KEY sockopt_len = sizeof(struct sctp_authkeyid); ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY, &authkeyid, sockopt_len); if (ret < 0) break; # endif # ifndef SCTP_AUTHENTICATION_EVENT if (authkeyid.scact_keynumber > 0) { authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY, &authkeyid, sizeof(struct sctp_authkeyid)); if (ret < 0) break; } # endif data->ccs_rcvd = 0; data->ccs_sent = 0; } break; case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo)) num = sizeof(struct bio_dgram_sctp_sndinfo); memcpy(ptr, &(data->sndinfo), num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo)) num = sizeof(struct bio_dgram_sctp_sndinfo); memcpy(&(data->sndinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo)) num = sizeof(struct bio_dgram_sctp_rcvinfo); memcpy(ptr, &data->rcvinfo, num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo)) num = sizeof(struct bio_dgram_sctp_rcvinfo); memcpy(&(data->rcvinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_GET_PRINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_prinfo)) num = sizeof(struct bio_dgram_sctp_prinfo); memcpy(ptr, &(data->prinfo), num); ret = num; break; case BIO_CTRL_DGRAM_SCTP_SET_PRINFO: /* Returns the size of the copied struct. */ if (num > (long)sizeof(struct bio_dgram_sctp_prinfo)) num = sizeof(struct bio_dgram_sctp_prinfo); memcpy(&(data->prinfo), ptr, num); break; case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN: /* Returns always 1. */ if (num > 0) data->save_shutdown = 1; else data->save_shutdown = 0; break; default: /* * Pass to default ctrl function to process SCTP unspecific commands */ ret = dgram_ctrl(b, cmd, num, ptr); break; } return (ret); } int BIO_dgram_sctp_notification_cb(BIO *b, void (*handle_notifications) (BIO *bio, void *context, void *buf), void *context) { bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; if (handle_notifications != NULL) { data->handle_notifications = handle_notifications; data->notification_context = context; } else return -1; return 0; } int BIO_dgram_sctp_wait_for_dry(BIO *b) { int is_dry = 0; int n, sockflags, ret; union sctp_notification snp; struct msghdr msg; struct iovec iov; # ifdef SCTP_EVENT struct sctp_event event; # else struct sctp_event_subscribe event; socklen_t eventsize; # endif bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; /* set sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); # else eventsize = sizeof(struct sctp_event_subscribe); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (ret < 0) return -1; event.sctp_sender_dry_event = 1; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); # endif if (ret < 0) return -1; /* peek for notification */ memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, MSG_PEEK); if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return 0; } /* if we find a notification, process it and try again if necessary */ while (msg.msg_flags & MSG_NOTIFICATION) { memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return is_dry; } if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) { is_dry = 1; /* disable sender dry event */ # ifdef SCTP_EVENT memset(&event, 0, sizeof(event)); event.se_assoc_id = 0; event.se_type = SCTP_SENDER_DRY_EVENT; event.se_on = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event)); # else eventsize = (socklen_t) sizeof(struct sctp_event_subscribe); ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize); if (ret < 0) return -1; event.sctp_sender_dry_event = 0; ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe)); # endif if (ret < 0) return -1; } # ifdef SCTP_AUTHENTICATION_EVENT if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, &snp); # endif if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)&snp); /* found notification, peek again */ memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; /* if we have seen the dry already, don't wait */ if (is_dry) { sockflags = fcntl(b->num, F_GETFL, 0); fcntl(b->num, F_SETFL, O_NONBLOCK); } n = recvmsg(b->num, &msg, MSG_PEEK); if (is_dry) { fcntl(b->num, F_SETFL, sockflags); } if (n <= 0) { if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK)) return -1; else return is_dry; } } /* read anything else */ return is_dry; } int BIO_dgram_sctp_msg_waiting(BIO *b) { int n, sockflags; union sctp_notification snp; struct msghdr msg; struct iovec iov; bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr; /* Check if there are any messages waiting to be read */ do { memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; sockflags = fcntl(b->num, F_GETFL, 0); fcntl(b->num, F_SETFL, O_NONBLOCK); n = recvmsg(b->num, &msg, MSG_PEEK); fcntl(b->num, F_SETFL, sockflags); /* if notification, process and try again */ if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) { # ifdef SCTP_AUTHENTICATION_EVENT if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT) dgram_sctp_handle_auth_free_key_event(b, &snp); # endif memset(&snp, 0, sizeof(snp)); iov.iov_base = (char *)&snp; iov.iov_len = sizeof(union sctp_notification); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = recvmsg(b->num, &msg, 0); if (data->handle_notifications != NULL) data->handle_notifications(b, data->notification_context, (void *)&snp); } } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)); /* Return 1 if there is a message to be read, return 0 otherwise. */ if (n > 0) return 1; else return 0; } static int dgram_sctp_puts(BIO *bp, const char *str) { int n, ret; n = strlen(str); ret = dgram_sctp_write(bp, str, n); return (ret); } # endif static int BIO_dgram_should_retry(int i) { int err; if ((i == 0) || (i == -1)) { err = get_last_socket_error(); # if defined(OPENSSL_SYS_WINDOWS) /* * If the socket return value (i) is -1 and err is unexpectedly 0 at * this point, the error code was overwritten by another system call * before this error handling is called. */ # endif return (BIO_dgram_non_fatal_error(err)); } return (0); } int BIO_dgram_non_fatal_error(int err) { switch (err) { # if defined(OPENSSL_SYS_WINDOWS) # if defined(WSAEWOULDBLOCK) case WSAEWOULDBLOCK: # endif # endif # ifdef EWOULDBLOCK # ifdef WSAEWOULDBLOCK # if WSAEWOULDBLOCK != EWOULDBLOCK case EWOULDBLOCK: # endif # else case EWOULDBLOCK: # endif # endif # ifdef EINTR case EINTR: # endif # ifdef EAGAIN # if EWOULDBLOCK != EAGAIN case EAGAIN: # endif # endif # ifdef EPROTO case EPROTO: # endif # ifdef EINPROGRESS case EINPROGRESS: # endif # ifdef EALREADY case EALREADY: # endif return (1); /* break; */ default: break; } return (0); } static void get_current_time(struct timeval *t) { # if defined(_WIN32) SYSTEMTIME st; union { unsigned __int64 ul; FILETIME ft; } now; GetSystemTime(&st); SystemTimeToFileTime(&st, &now.ft); # ifdef __MINGW32__ now.ul -= 116444736000000000ULL; # else now.ul -= 116444736000000000UI64; /* re-bias to 1/1/1970 */ # endif t->tv_sec = (long)(now.ul / 10000000); t->tv_usec = ((int)(now.ul % 10000000)) / 10; # elif defined(OPENSSL_SYS_VMS) struct timeb tb; ftime(&tb); t->tv_sec = (long)tb.time; t->tv_usec = (long)tb.millitm * 1000; # else gettimeofday(t, NULL); # endif } #endif