/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include /*- * IMPLEMENTATION NOTES. * * As you might have noticed 32-bit hash algorithms: * * - permit SHA_LONG to be wider than 32-bit * - optimized versions implement two transform functions: one operating * on [aligned] data in host byte order and one - on data in input * stream byte order; * - share common byte-order neutral collector and padding function * implementations, ../md32_common.h; * * Neither of the above applies to this SHA-512 implementations. Reasons * [in reverse order] are: * * - it's the only 64-bit hash algorithm for the moment of this writing, * there is no need for common collector/padding implementation [yet]; * - by supporting only one transform function [which operates on * *aligned* data in input stream byte order, big-endian in this case] * we minimize burden of maintenance in two ways: a) collector/padding * function is simpler; b) only one transform function to stare at; * - SHA_LONG64 is required to be exactly 64-bit in order to be able to * apply a number of optimizations to mitigate potential performance * penalties caused by previous design decision; * * Caveat lector. * * Implementation relies on the fact that "long long" is 64-bit on * both 32- and 64-bit platforms. If some compiler vendor comes up * with 128-bit long long, adjustment to sha.h would be required. * As this implementation relies on 64-bit integer type, it's totally * inappropriate for platforms which don't support it, most notably * 16-bit platforms. */ #include #include #include #include #include #include "internal/cryptlib.h" #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \ defined(__s390__) || defined(__s390x__) || \ defined(__aarch64__) || \ defined(SHA512_ASM) # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA #endif int SHA384_Init(SHA512_CTX *c) { c->h[0] = U64(0xcbbb9d5dc1059ed8); c->h[1] = U64(0x629a292a367cd507); c->h[2] = U64(0x9159015a3070dd17); c->h[3] = U64(0x152fecd8f70e5939); c->h[4] = U64(0x67332667ffc00b31); c->h[5] = U64(0x8eb44a8768581511); c->h[6] = U64(0xdb0c2e0d64f98fa7); c->h[7] = U64(0x47b5481dbefa4fa4); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA384_DIGEST_LENGTH; return 1; } int SHA512_Init(SHA512_CTX *c) { c->h[0] = U64(0x6a09e667f3bcc908); c->h[1] = U64(0xbb67ae8584caa73b); c->h[2] = U64(0x3c6ef372fe94f82b); c->h[3] = U64(0xa54ff53a5f1d36f1); c->h[4] = U64(0x510e527fade682d1); c->h[5] = U64(0x9b05688c2b3e6c1f); c->h[6] = U64(0x1f83d9abfb41bd6b); c->h[7] = U64(0x5be0cd19137e2179); c->Nl = 0; c->Nh = 0; c->num = 0; c->md_len = SHA512_DIGEST_LENGTH; return 1; } #ifndef SHA512_ASM static #endif void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num); int SHA512_Final(unsigned char *md, SHA512_CTX *c) { unsigned char *p = (unsigned char *)c->u.p; size_t n = c->num; p[n] = 0x80; /* There always is a room for one */ n++; if (n > (sizeof(c->u) - 16)) { memset(p + n, 0, sizeof(c->u) - n); n = 0; sha512_block_data_order(c, p, 1); } memset(p + n, 0, sizeof(c->u) - 16 - n); #ifdef B_ENDIAN c->u.d[SHA_LBLOCK - 2] = c->Nh; c->u.d[SHA_LBLOCK - 1] = c->Nl; #else p[sizeof(c->u) - 1] = (unsigned char)(c->Nl); p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8); p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16); p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24); p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32); p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40); p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48); p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56); p[sizeof(c->u) - 9] = (unsigned char)(c->Nh); p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8); p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16); p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24); p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32); p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40); p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48); p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56); #endif sha512_block_data_order(c, p, 1); if (md == 0) return 0; switch (c->md_len) { /* Let compiler decide if it's appropriate to unroll... */ case SHA384_DIGEST_LENGTH: for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } break; case SHA512_DIGEST_LENGTH: for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) { SHA_LONG64 t = c->h[n]; *(md++) = (unsigned char)(t >> 56); *(md++) = (unsigned char)(t >> 48); *(md++) = (unsigned char)(t >> 40); *(md++) = (unsigned char)(t >> 32); *(md++) = (unsigned char)(t >> 24); *(md++) = (unsigned char)(t >> 16); *(md++) = (unsigned char)(t >> 8); *(md++) = (unsigned char)(t); } break; /* ... as well as make sure md_len is not abused. */ default: return 0; } return 1; } int SHA384_Final(unsigned char *md, SHA512_CTX *c) { return SHA512_Final(md, c); } int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len) { SHA_LONG64 l; unsigned char *p = c->u.p; const unsigned char *data = (const unsigned char *)_data; if (len == 0) return 1; l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff); if (l < c->Nl) c->Nh++; if (sizeof(len) >= 8) c->Nh += (((SHA_LONG64) len) >> 61); c->Nl = l; if (c->num != 0) { size_t n = sizeof(c->u) - c->num; if (len < n) { memcpy(p + c->num, data, len), c->num += (unsigned int)len; return 1; } else { memcpy(p + c->num, data, n), c->num = 0; len -= n, data += n; sha512_block_data_order(c, p, 1); } } if (len >= sizeof(c->u)) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data % sizeof(c->u.d[0]) != 0) while (len >= sizeof(c->u)) memcpy(p, data, sizeof(c->u)), sha512_block_data_order(c, p, 1), len -= sizeof(c->u), data += sizeof(c->u); else #endif sha512_block_data_order(c, data, len / sizeof(c->u)), data += len, len %= sizeof(c->u), data -= len; } if (len != 0) memcpy(p, data, len), c->num = (int)len; return 1; } int SHA384_Update(SHA512_CTX *c, const void *data, size_t len) { return SHA512_Update(c, data, len); } void SHA512_Transform(SHA512_CTX *c, const unsigned char *data) { #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA if ((size_t)data % sizeof(c->u.d[0]) != 0) memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p; #endif sha512_block_data_order(c, data, 1); } unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA384_DIGEST_LENGTH]; if (md == NULL) md = m; SHA384_Init(&c); SHA512_Update(&c, d, n); SHA512_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md) { SHA512_CTX c; static unsigned char m[SHA512_DIGEST_LENGTH]; if (md == NULL) md = m; SHA512_Init(&c); SHA512_Update(&c, d, n); SHA512_Final(md, &c); OPENSSL_cleanse(&c, sizeof(c)); return md; } #ifndef SHA512_ASM static const SHA_LONG64 K512[80] = { U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd), U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc), U64(0x3956c25bf348b538), U64(0x59f111f1b605d019), U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118), U64(0xd807aa98a3030242), U64(0x12835b0145706fbe), U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2), U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1), U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694), U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3), U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65), U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483), U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5), U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210), U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4), U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725), U64(0x06ca6351e003826f), U64(0x142929670a0e6e70), U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926), U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df), U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8), U64(0x81c2c92e47edaee6), U64(0x92722c851482353b), U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001), U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30), U64(0xd192e819d6ef5218), U64(0xd69906245565a910), U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8), U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53), U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8), U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb), U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3), U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60), U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec), U64(0x90befffa23631e28), U64(0xa4506cebde82bde9), U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b), U64(0xca273eceea26619c), U64(0xd186b8c721c0c207), U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178), U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6), U64(0x113f9804bef90dae), U64(0x1b710b35131c471b), U64(0x28db77f523047d84), U64(0x32caab7b40c72493), U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c), U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a), U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817) }; # ifndef PEDANTIC # if defined(__GNUC__) && __GNUC__>=2 && \ !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) # if defined(__x86_64) || defined(__x86_64__) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("rorq %1,%0" \ : "=r"(ret) \ : "J"(n),"0"(a) \ : "cc"); ret; }) # if !defined(B_ENDIAN) # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \ asm ("bswapq %0" \ : "=r"(ret) \ : "0"(ret)); ret; }) # endif # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN) # if defined(I386_ONLY) # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ "roll $16,%%eax; roll $16,%%edx; "\ "xchgb %%ah,%%al;xchgb %%dh,%%dl;"\ : "=a"(lo),"=d"(hi) \ : "0"(lo),"1"(hi) : "cc"); \ ((SHA_LONG64)hi)<<32|lo; }) # else # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\ unsigned int hi=p[0],lo=p[1]; \ asm ("bswapl %0; bswapl %1;" \ : "=r"(lo),"=r"(hi) \ : "0"(lo),"1"(hi)); \ ((SHA_LONG64)hi)<<32|lo; }) # endif # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("rotrdi %0,%1,%2" \ : "=r"(ret) \ : "r"(a),"K"(n)); ret; }) # elif defined(__aarch64__) # define ROTR(a,n) ({ SHA_LONG64 ret; \ asm ("ror %0,%1,%2" \ : "=r"(ret) \ : "r"(a),"I"(n)); ret; }) # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ # define PULL64(x) ({ SHA_LONG64 ret; \ asm ("rev %0,%1" \ : "=r"(ret) \ : "r"(*((const SHA_LONG64 *)(&(x))))); ret; }) # endif # endif # elif defined(_MSC_VER) # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ # pragma intrinsic(_rotr64) # define ROTR(a,n) _rotr64((a),n) # endif # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && \ !defined(OPENSSL_NO_INLINE_ASM) # if defined(I386_ONLY) static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx,[ecx + 0] _asm mov eax,[ecx + 4] _asm xchg dh, dl _asm xchg ah, al _asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al } # else static SHA_LONG64 __fastcall __pull64be(const void *x) { _asm mov edx,[ecx + 0] _asm mov eax,[ecx + 4] _asm bswap edx _asm bswap eax } # endif # define PULL64(x) __pull64be(&(x)) # endif # endif # endif # ifndef PULL64 # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8)) # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7)) # endif # ifndef ROTR # define ROTR(x,s) (((x)>>s) | (x)<<(64-s)) # endif # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) # if defined(__i386) || defined(__i386__) || defined(_M_IX86) /* * This code should give better results on 32-bit CPU with less than * ~24 registers, both size and performance wise... */ static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 A, E, T; SHA_LONG64 X[9 + 80], *F; int i; while (num--) { F = X + 80; A = ctx->h[0]; F[1] = ctx->h[1]; F[2] = ctx->h[2]; F[3] = ctx->h[3]; E = ctx->h[4]; F[5] = ctx->h[5]; F[6] = ctx->h[6]; F[7] = ctx->h[7]; for (i = 0; i < 16; i++, F--) { # ifdef B_ENDIAN T = W[i]; # else T = PULL64(W[i]); # endif F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } for (; i < 80; i++, F--) { T = sigma0(F[8 + 16 - 1]); T += sigma1(F[8 + 16 - 14]); T += F[8 + 16] + F[8 + 16 - 9]; F[0] = A; F[4] = E; F[8] = T; T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i]; E = F[3] + T; A = T + Sigma0(A) + Maj(A, F[1], F[2]); } ctx->h[0] += A; ctx->h[1] += F[1]; ctx->h[2] += F[2]; ctx->h[3] += F[3]; ctx->h[4] += E; ctx->h[5] += F[5]; ctx->h[6] += F[6]; ctx->h[7] += F[7]; W += SHA_LBLOCK; } } # elif defined(OPENSSL_SMALL_FOOTPRINT) static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; for (i = 0; i < 16; i++) { # ifdef B_ENDIAN T1 = X[i] = W[i]; # else T1 = X[i] = PULL64(W[i]); # endif T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } for (; i < 80; i++) { s0 = X[(i + 1) & 0x0f]; s0 = sigma0(s0); s1 = X[(i + 14) & 0x0f]; s1 = sigma1(s1); T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; T2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W += SHA_LBLOCK; } } # else # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \ h = Sigma0(a) + Maj(a,b,c); \ d += T1; h += T1; } while (0) # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \ s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \ s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \ T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \ ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0) static void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num) { const SHA_LONG64 *W = in; SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1; SHA_LONG64 X[16]; int i; while (num--) { a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; # ifdef B_ENDIAN T1 = X[0] = W[0]; ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = W[1]; ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = W[2]; ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = W[3]; ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = W[4]; ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = W[5]; ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = W[6]; ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = W[7]; ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = W[8]; ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = W[9]; ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = W[10]; ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = W[11]; ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = W[12]; ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = W[13]; ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = W[14]; ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = W[15]; ROUND_00_15(15, b, c, d, e, f, g, h, a); # else T1 = X[0] = PULL64(W[0]); ROUND_00_15(0, a, b, c, d, e, f, g, h); T1 = X[1] = PULL64(W[1]); ROUND_00_15(1, h, a, b, c, d, e, f, g); T1 = X[2] = PULL64(W[2]); ROUND_00_15(2, g, h, a, b, c, d, e, f); T1 = X[3] = PULL64(W[3]); ROUND_00_15(3, f, g, h, a, b, c, d, e); T1 = X[4] = PULL64(W[4]); ROUND_00_15(4, e, f, g, h, a, b, c, d); T1 = X[5] = PULL64(W[5]); ROUND_00_15(5, d, e, f, g, h, a, b, c); T1 = X[6] = PULL64(W[6]); ROUND_00_15(6, c, d, e, f, g, h, a, b); T1 = X[7] = PULL64(W[7]); ROUND_00_15(7, b, c, d, e, f, g, h, a); T1 = X[8] = PULL64(W[8]); ROUND_00_15(8, a, b, c, d, e, f, g, h); T1 = X[9] = PULL64(W[9]); ROUND_00_15(9, h, a, b, c, d, e, f, g); T1 = X[10] = PULL64(W[10]); ROUND_00_15(10, g, h, a, b, c, d, e, f); T1 = X[11] = PULL64(W[11]); ROUND_00_15(11, f, g, h, a, b, c, d, e); T1 = X[12] = PULL64(W[12]); ROUND_00_15(12, e, f, g, h, a, b, c, d); T1 = X[13] = PULL64(W[13]); ROUND_00_15(13, d, e, f, g, h, a, b, c); T1 = X[14] = PULL64(W[14]); ROUND_00_15(14, c, d, e, f, g, h, a, b); T1 = X[15] = PULL64(W[15]); ROUND_00_15(15, b, c, d, e, f, g, h, a); # endif for (i = 16; i < 80; i += 16) { ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X); ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X); ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X); ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X); ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X); ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X); ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X); ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X); ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X); } ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; W += SHA_LBLOCK; } } # endif #endif /* SHA512_ASM */