/* * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/refcount.h" #include "internal/ec_int.h" #include "curve448/curve448_lcl.h" #if defined(__SUNPRO_C) # if __SUNPRO_C >= 0x520 # pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE) # endif #endif /* Use default functions for poin2oct, oct2point and compressed coordinates */ #define EC_FLAGS_DEFAULT_OCT 0x1 /* Use custom formats for EC_GROUP, EC_POINT and EC_KEY */ #define EC_FLAGS_CUSTOM_CURVE 0x2 /* Curve does not support signing operations */ #define EC_FLAGS_NO_SIGN 0x4 /* * Structure details are not part of the exported interface, so all this may * change in future versions. */ struct ec_method_st { /* Various method flags */ int flags; /* used by EC_METHOD_get_field_type: */ int field_type; /* a NID */ /* * used by EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, * EC_GROUP_copy: */ int (*group_init) (EC_GROUP *); void (*group_finish) (EC_GROUP *); void (*group_clear_finish) (EC_GROUP *); int (*group_copy) (EC_GROUP *, const EC_GROUP *); /* used by EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, */ /* EC_GROUP_set_curve_GF2m, and EC_GROUP_get_curve_GF2m: */ int (*group_set_curve) (EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int (*group_get_curve) (const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); /* used by EC_GROUP_get_degree: */ int (*group_get_degree) (const EC_GROUP *); int (*group_order_bits) (const EC_GROUP *); /* used by EC_GROUP_check: */ int (*group_check_discriminant) (const EC_GROUP *, BN_CTX *); /* * used by EC_POINT_new, EC_POINT_free, EC_POINT_clear_free, * EC_POINT_copy: */ int (*point_init) (EC_POINT *); void (*point_finish) (EC_POINT *); void (*point_clear_finish) (EC_POINT *); int (*point_copy) (EC_POINT *, const EC_POINT *); /*- * used by EC_POINT_set_to_infinity, * EC_POINT_set_Jprojective_coordinates_GFp, * EC_POINT_get_Jprojective_coordinates_GFp, * EC_POINT_set_affine_coordinates_GFp, ..._GF2m, * EC_POINT_get_affine_coordinates_GFp, ..._GF2m, * EC_POINT_set_compressed_coordinates_GFp, ..._GF2m: */ int (*point_set_to_infinity) (const EC_GROUP *, EC_POINT *); int (*point_set_Jprojective_coordinates_GFp) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); int (*point_get_Jprojective_coordinates_GFp) (const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); int (*point_set_affine_coordinates) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int (*point_get_affine_coordinates) (const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int (*point_set_compressed_coordinates) (const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); /* used by EC_POINT_point2oct, EC_POINT_oct2point: */ size_t (*point2oct) (const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int (*oct2point) (const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); /* used by EC_POINT_add, EC_POINT_dbl, ECP_POINT_invert: */ int (*add) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int (*dbl) (const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int (*invert) (const EC_GROUP *, EC_POINT *, BN_CTX *); /* * used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp: */ int (*is_at_infinity) (const EC_GROUP *, const EC_POINT *); int (*is_on_curve) (const EC_GROUP *, const EC_POINT *, BN_CTX *); int (*point_cmp) (const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); /* used by EC_POINT_make_affine, EC_POINTs_make_affine: */ int (*make_affine) (const EC_GROUP *, EC_POINT *, BN_CTX *); int (*points_make_affine) (const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); /* * used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, * EC_POINT_have_precompute_mult (default implementations are used if the * 'mul' pointer is 0): */ /*- * mul() calculates the value * * r := generator * scalar * + points[0] * scalars[0] * + ... * + points[num-1] * scalars[num-1]. * * For a fixed point multiplication (scalar != NULL, num == 0) * or a variable point multiplication (scalar == NULL, num == 1), * mul() must use a constant time algorithm: in both cases callers * should provide an input scalar (either scalar or scalars[0]) * in the range [0, ec_group_order); for robustness, implementers * should handle the case when the scalar has not been reduced, but * may treat it as an unusual input, without any constant-timeness * guarantee. */ int (*mul) (const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int (*precompute_mult) (EC_GROUP *group, BN_CTX *); int (*have_precompute_mult) (const EC_GROUP *group); /* internal functions */ /* * 'field_mul', 'field_sqr', and 'field_div' can be used by 'add' and * 'dbl' so that the same implementations of point operations can be used * with different optimized implementations of expensive field * operations: */ int (*field_mul) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int (*field_sqr) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int (*field_div) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); /* e.g. to Montgomery */ int (*field_encode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* e.g. from Montgomery */ int (*field_decode) (const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int (*field_set_to_one) (const EC_GROUP *, BIGNUM *r, BN_CTX *); /* private key operations */ size_t (*priv2oct)(const EC_KEY *eckey, unsigned char *buf, size_t len); int (*oct2priv)(EC_KEY *eckey, const unsigned char *buf, size_t len); int (*set_private)(EC_KEY *eckey, const BIGNUM *priv_key); int (*keygen)(EC_KEY *eckey); int (*keycheck)(const EC_KEY *eckey); int (*keygenpub)(EC_KEY *eckey); int (*keycopy)(EC_KEY *dst, const EC_KEY *src); void (*keyfinish)(EC_KEY *eckey); /* custom ECDH operation */ int (*ecdh_compute_key)(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); /* Inverse modulo order */ int (*field_inverse_mod_ord)(const EC_GROUP *, BIGNUM *r, const BIGNUM *x, BN_CTX *); int (*blind_coordinates)(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); int (*ladder_pre)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int (*ladder_step)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); int (*ladder_post)(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx); }; /* * Types and functions to manipulate pre-computed values. */ typedef struct nistp224_pre_comp_st NISTP224_PRE_COMP; typedef struct nistp256_pre_comp_st NISTP256_PRE_COMP; typedef struct nistp521_pre_comp_st NISTP521_PRE_COMP; typedef struct nistz256_pre_comp_st NISTZ256_PRE_COMP; typedef struct ec_pre_comp_st EC_PRE_COMP; struct ec_group_st { const EC_METHOD *meth; EC_POINT *generator; /* optional */ BIGNUM *order, *cofactor; int curve_name; /* optional NID for named curve */ int asn1_flag; /* flag to control the asn1 encoding */ point_conversion_form_t asn1_form; unsigned char *seed; /* optional seed for parameters (appears in * ASN1) */ size_t seed_len; /* * The following members are handled by the method functions, even if * they appear generic */ /* * Field specification. For curves over GF(p), this is the modulus; for * curves over GF(2^m), this is the irreducible polynomial defining the * field. */ BIGNUM *field; /* * Field specification for curves over GF(2^m). The irreducible f(t) is * then of the form: t^poly[0] + t^poly[1] + ... + t^poly[k] where m = * poly[0] > poly[1] > ... > poly[k] = 0. The array is terminated with * poly[k+1]=-1. All elliptic curve irreducibles have at most 5 non-zero * terms. */ int poly[6]; /* * Curve coefficients. (Here the assumption is that BIGNUMs can be used * or abused for all kinds of fields, not just GF(p).) For characteristic * > 3, the curve is defined by a Weierstrass equation of the form y^2 = * x^3 + a*x + b. For characteristic 2, the curve is defined by an * equation of the form y^2 + x*y = x^3 + a*x^2 + b. */ BIGNUM *a, *b; /* enable optimized point arithmetics for special case */ int a_is_minus3; /* method-specific (e.g., Montgomery structure) */ void *field_data1; /* method-specific */ void *field_data2; /* method-specific */ int (*field_mod_func) (BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); /* data for ECDSA inverse */ BN_MONT_CTX *mont_data; /* * Precomputed values for speed. The PCT_xxx names match the * pre_comp.xxx union names; see the SETPRECOMP and HAVEPRECOMP * macros, below. */ enum { PCT_none, PCT_nistp224, PCT_nistp256, PCT_nistp521, PCT_nistz256, PCT_ec } pre_comp_type; union { NISTP224_PRE_COMP *nistp224; NISTP256_PRE_COMP *nistp256; NISTP521_PRE_COMP *nistp521; NISTZ256_PRE_COMP *nistz256; EC_PRE_COMP *ec; } pre_comp; }; #define SETPRECOMP(g, type, pre) \ g->pre_comp_type = PCT_##type, g->pre_comp.type = pre #define HAVEPRECOMP(g, type) \ g->pre_comp_type == PCT_##type && g->pre_comp.type != NULL struct ec_key_st { const EC_KEY_METHOD *meth; ENGINE *engine; int version; EC_GROUP *group; EC_POINT *pub_key; BIGNUM *priv_key; unsigned int enc_flag; point_conversion_form_t conv_form; CRYPTO_REF_COUNT references; int flags; CRYPTO_EX_DATA ex_data; CRYPTO_RWLOCK *lock; }; struct ec_point_st { const EC_METHOD *meth; /* NID for the curve if known */ int curve_name; /* * All members except 'meth' are handled by the method functions, even if * they appear generic */ BIGNUM *X; BIGNUM *Y; BIGNUM *Z; /* Jacobian projective coordinates: * (X, Y, * Z) represents (X/Z^2, Y/Z^3) if Z != 0 */ int Z_is_one; /* enable optimized point arithmetics for * special case */ }; static ossl_inline int ec_point_is_compat(const EC_POINT *point, const EC_GROUP *group) { if (group->meth != point->meth || (group->curve_name != 0 && point->curve_name != 0 && group->curve_name != point->curve_name)) return 0; return 1; } NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *); NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *); NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *); NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *); NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *); EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *); void EC_pre_comp_free(EC_GROUP *group); void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *); void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *); void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *); void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *); void EC_ec_pre_comp_free(EC_PRE_COMP *); /* * method functions in ec_mult.c (ec_lib.c uses these as defaults if * group->method->mul is 0) */ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *); int ec_wNAF_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_smpl.c */ int ec_GFp_simple_group_init(EC_GROUP *); void ec_GFp_simple_group_finish(EC_GROUP *); void ec_GFp_simple_group_clear_finish(EC_GROUP *); int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); int ec_GFp_simple_group_get_degree(const EC_GROUP *); int ec_GFp_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); int ec_GFp_simple_point_init(EC_POINT *); void ec_GFp_simple_point_finish(EC_POINT *); void ec_GFp_simple_point_clear_finish(EC_POINT *); int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *); int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); size_t ec_GFp_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int ec_GFp_simple_oct2point(const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); /* method functions in ecp_mont.c */ int ec_GFp_mont_group_init(EC_GROUP *); int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); void ec_GFp_mont_group_finish(EC_GROUP *); void ec_GFp_mont_group_clear_finish(EC_GROUP *); int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GFp_mont_field_set_to_one(const EC_GROUP *, BIGNUM *r, BN_CTX *); /* method functions in ecp_nist.c */ int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src); int ec_GFp_nist_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_nist_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GFp_nist_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* method functions in ec2_smpl.c */ int ec_GF2m_simple_group_init(EC_GROUP *); void ec_GF2m_simple_group_finish(EC_GROUP *); void ec_GF2m_simple_group_clear_finish(EC_GROUP *); int ec_GF2m_simple_group_copy(EC_GROUP *, const EC_GROUP *); int ec_GF2m_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GF2m_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); int ec_GF2m_simple_group_get_degree(const EC_GROUP *); int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); int ec_GF2m_simple_point_init(EC_POINT *); void ec_GF2m_simple_point_finish(EC_POINT *); void ec_GF2m_simple_point_clear_finish(EC_POINT *); int ec_GF2m_simple_point_copy(EC_POINT *, const EC_POINT *); int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, const BIGNUM *y, BN_CTX *); int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, BIGNUM *x, BIGNUM *y, BN_CTX *); int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, const BIGNUM *x, int y_bit, BN_CTX *); size_t ec_GF2m_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, unsigned char *buf, size_t len, BN_CTX *); int ec_GF2m_simple_oct2point(const EC_GROUP *, EC_POINT *, const unsigned char *buf, size_t len, BN_CTX *); int ec_GF2m_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GF2m_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); int ec_GF2m_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GF2m_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); int ec_GF2m_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); int ec_GF2m_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); int ec_GF2m_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); int ec_GF2m_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); int ec_GF2m_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 /* method functions in ecp_nistp224.c */ int ec_GFp_nistp224_group_init(EC_GROUP *group); int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp224_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_nistp256.c */ int ec_GFp_nistp256_group_init(EC_GROUP *group); int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp256_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group); /* method functions in ecp_nistp521.c */ int ec_GFp_nistp521_group_init(EC_GROUP *group); int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); int ec_GFp_nistp521_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx); int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group); /* utility functions in ecp_nistputil.c */ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, size_t felem_size, void *tmp_felems, void (*felem_one) (void *out), int (*felem_is_zero) (const void *in), void (*felem_assign) (void *out, const void *in), void (*felem_square) (void *out, const void *in), void (*felem_mul) (void *out, const void *in1, const void *in2), void (*felem_inv) (void *out, const void *in), void (*felem_contract) (void *out, const void *in)); void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in); #endif int ec_group_simple_order_bits(const EC_GROUP *group); #ifdef ECP_NISTZ256_ASM /** Returns GFp methods using montgomery multiplication, with x86-64 optimized * P256. See http://eprint.iacr.org/2013/816. * \return EC_METHOD object */ const EC_METHOD *EC_GFp_nistz256_method(void); #endif size_t ec_key_simple_priv2oct(const EC_KEY *eckey, unsigned char *buf, size_t len); int ec_key_simple_oct2priv(EC_KEY *eckey, const unsigned char *buf, size_t len); int ec_key_simple_generate_key(EC_KEY *eckey); int ec_key_simple_generate_public_key(EC_KEY *eckey); int ec_key_simple_check_key(const EC_KEY *eckey); /* EC_METHOD definitions */ struct ec_key_method_st { const char *name; int32_t flags; int (*init)(EC_KEY *key); void (*finish)(EC_KEY *key); int (*copy)(EC_KEY *dest, const EC_KEY *src); int (*set_group)(EC_KEY *key, const EC_GROUP *grp); int (*set_private)(EC_KEY *key, const BIGNUM *priv_key); int (*set_public)(EC_KEY *key, const EC_POINT *pub_key); int (*keygen)(EC_KEY *key); int (*compute_key)(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); int (*sign)(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey); int (*sign_setup)(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); ECDSA_SIG *(*sign_sig)(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey); int (*verify)(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey); int (*verify_sig)(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey); }; #define EC_KEY_METHOD_DYNAMIC 1 int ossl_ec_key_gen(EC_KEY *eckey); int ossl_ecdh_compute_key(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen, const EC_POINT *pub_key, const EC_KEY *ecdh); struct ECDSA_SIG_st { BIGNUM *r; BIGNUM *s; }; int ossl_ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp); int ossl_ecdsa_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey); ECDSA_SIG *ossl_ecdsa_sign_sig(const unsigned char *dgst, int dgst_len, const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey); int ossl_ecdsa_verify(int type, const unsigned char *dgst, int dgst_len, const unsigned char *sigbuf, int sig_len, EC_KEY *eckey); int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey); int ED25519_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, const uint8_t public_key[32], const uint8_t private_key[32]); int ED25519_verify(const uint8_t *message, size_t message_len, const uint8_t signature[64], const uint8_t public_key[32]); void ED25519_public_from_private(uint8_t out_public_key[32], const uint8_t private_key[32]); int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], const uint8_t peer_public_value[32]); void X25519_public_from_private(uint8_t out_public_value[32], const uint8_t private_key[32]); /*- * This functions computes a single point multiplication over the EC group, * using, at a high level, a Montgomery ladder with conditional swaps, with * various timing attack defenses. * * It performs either a fixed point multiplication * (scalar * generator) * when point is NULL, or a variable point multiplication * (scalar * point) * when point is not NULL. * * `scalar` cannot be NULL and should be in the range [0,n) otherwise all * constant time bets are off (where n is the cardinality of the EC group). * * This function expects `group->order` and `group->cardinality` to be well * defined and non-zero: it fails with an error code otherwise. * * NB: This says nothing about the constant-timeness of the ladder step * implementation (i.e., the default implementation is based on EC_POINT_add and * EC_POINT_dbl, which of course are not constant time themselves) or the * underlying multiprecision arithmetic. * * The product is stored in `r`. * * This is an internal function: callers are in charge of ensuring that the * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. * * Returns 1 on success, 0 otherwise. */ int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx); int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx); static inline int ec_point_ladder_pre(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_pre != NULL) return group->meth->ladder_pre(group, r, s, p, ctx); if (!EC_POINT_copy(s, p) || !EC_POINT_dbl(group, r, s, ctx)) return 0; return 1; } static inline int ec_point_ladder_step(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_step != NULL) return group->meth->ladder_step(group, r, s, p, ctx); if (!EC_POINT_add(group, s, r, s, ctx) || !EC_POINT_dbl(group, r, r, ctx)) return 0; return 1; } static inline int ec_point_ladder_post(const EC_GROUP *group, EC_POINT *r, EC_POINT *s, EC_POINT *p, BN_CTX *ctx) { if (group->meth->ladder_post != NULL) return group->meth->ladder_post(group, r, s, p, ctx); return 1; }