#! /usr/bin/env perl # Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Copyright (c) 2008 Andy Polyakov # # This module may be used under the terms of either the GNU General # Public License version 2 or later, the GNU Lesser General Public # License version 2.1 or later, the Mozilla Public License version # 1.1 or the BSD License. The exact terms of either license are # distributed along with this module. For further details see # http://www.openssl.org/~appro/camellia/. # ==================================================================== # Performance in cycles per processed byte (less is better) in # 'openssl speed ...' benchmark: # # AMD64 Core2 EM64T # -evp camellia-128-ecb 16.7 21.0 22.7 # + over gcc 3.4.6 +25% +5% 0% # # camellia-128-cbc 15.7 20.4 21.1 # # 128-bit key setup 128 216 205 cycles/key # + over gcc 3.4.6 +54% +39% +15% # # Numbers in "+" rows represent performance improvement over compiler # generated code. Key setup timings are impressive on AMD and Core2 # thanks to 64-bit operations being covertly deployed. Improvement on # EM64T, pre-Core2 Intel x86_64 CPU, is not as impressive, because it # apparently emulates some of 64-bit operations in [32-bit] microcode. $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; sub hi() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1h/; $r; } sub lo() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/; $r =~ s/%[er]([sd]i)/%\1l/; $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } $t0="%eax";$t1="%ebx";$t2="%ecx";$t3="%edx"; @S=("%r8d","%r9d","%r10d","%r11d"); $i0="%esi"; $i1="%edi"; $Tbl="%rbp"; # size optimization $inp="%r12"; $out="%r13"; $key="%r14"; $keyend="%r15"; $arg0d=$win64?"%ecx":"%edi"; # const unsigned int Camellia_SBOX[4][256]; # Well, sort of... Camellia_SBOX[0][] is interleaved with [1][], # and [2][] - with [3][]. This is done to minimize code size. $SBOX1_1110=0; # Camellia_SBOX[0] $SBOX4_4404=4; # Camellia_SBOX[1] $SBOX2_0222=2048; # Camellia_SBOX[2] $SBOX3_3033=2052; # Camellia_SBOX[3] sub Camellia_Feistel { my $i=@_[0]; my $seed=defined(@_[1])?@_[1]:0; my $scale=$seed<0?-8:8; my $j=($i&1)*2; my ($s0,$s1,$s2,$s3)=(@S[($j)%4],@S[($j+1)%4],@S[($j+2)%4],@S[($j+3)%4]); $code.=<<___; xor $s0,$t0 # t0^=key[0] xor $s1,$t1 # t1^=key[1] movz `&hi("$t0")`,$i0 # (t0>>8)&0xff movz `&lo("$t1")`,$i1 # (t1>>0)&0xff mov $SBOX3_3033($Tbl,$i0,8),$t3 # t3=SBOX3_3033[0] mov $SBOX1_1110($Tbl,$i1,8),$t2 # t2=SBOX1_1110[1] movz `&lo("$t0")`,$i0 # (t0>>0)&0xff shr \$16,$t0 movz `&hi("$t1")`,$i1 # (t1>>8)&0xff xor $SBOX4_4404($Tbl,$i0,8),$t3 # t3^=SBOX4_4404[0] shr \$16,$t1 xor $SBOX4_4404($Tbl,$i1,8),$t2 # t2^=SBOX4_4404[1] movz `&hi("$t0")`,$i0 # (t0>>24)&0xff movz `&lo("$t1")`,$i1 # (t1>>16)&0xff xor $SBOX1_1110($Tbl,$i0,8),$t3 # t3^=SBOX1_1110[0] xor $SBOX3_3033($Tbl,$i1,8),$t2 # t2^=SBOX3_3033[1] movz `&lo("$t0")`,$i0 # (t0>>16)&0xff movz `&hi("$t1")`,$i1 # (t1>>24)&0xff xor $SBOX2_0222($Tbl,$i0,8),$t3 # t3^=SBOX2_0222[0] xor $SBOX2_0222($Tbl,$i1,8),$t2 # t2^=SBOX2_0222[1] mov `$seed+($i+1)*$scale`($key),$t1 # prefetch key[i+1] mov `$seed+($i+1)*$scale+4`($key),$t0 xor $t3,$t2 # t2^=t3 ror \$8,$t3 # t3=RightRotate(t3,8) xor $t2,$s2 xor $t2,$s3 xor $t3,$s3 ___ } # void Camellia_EncryptBlock_Rounds( # int grandRounds, # const Byte plaintext[], # const KEY_TABLE_TYPE keyTable, # Byte ciphertext[]) $code=<<___; .text # V1.x API .globl Camellia_EncryptBlock .type Camellia_EncryptBlock,\@abi-omnipotent .align 16 Camellia_EncryptBlock: .cfi_startproc movl \$128,%eax subl $arg0d,%eax movl \$3,$arg0d adcl \$0,$arg0d # keyBitLength==128?3:4 jmp .Lenc_rounds .cfi_endproc .size Camellia_EncryptBlock,.-Camellia_EncryptBlock # V2 .globl Camellia_EncryptBlock_Rounds .type Camellia_EncryptBlock_Rounds,\@function,4 .align 16 .Lenc_rounds: Camellia_EncryptBlock_Rounds: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lenc_prologue: #mov %rsi,$inp # put away arguments mov %rcx,$out mov %rdx,$key shl \$6,%edi # process grandRounds lea .LCamellia_SBOX(%rip),$Tbl lea ($key,%rdi),$keyend mov 0(%rsi),@S[0] # load plaintext mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] bswap @S[0] mov 12(%rsi),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_encrypt bswap @S[0] bswap @S[1] bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Lenc_epilogue: ret .cfi_endproc .size Camellia_EncryptBlock_Rounds,.-Camellia_EncryptBlock_Rounds .type _x86_64_Camellia_encrypt,\@abi-omnipotent .align 16 _x86_64_Camellia_encrypt: .cfi_startproc xor 0($key),@S[1] xor 4($key),@S[0] # ^=key[0-3] xor 8($key),@S[3] xor 12($key),@S[2] .align 16 .Leloop: mov 16($key),$t1 # prefetch key[4-5] mov 20($key),$t0 ___ for ($i=0;$i<6;$i++) { Camellia_Feistel($i,16); } $code.=<<___; lea 16*4($key),$key cmp $keyend,$key mov 8($key),$t3 # prefetch key[2-3] mov 12($key),$t2 je .Ledone and @S[0],$t0 or @S[3],$t3 rol \$1,$t0 xor $t3,@S[2] # s2^=s3|key[3]; xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1); and @S[2],$t2 or @S[1],$t1 rol \$1,$t2 xor $t1,@S[0] # s0^=s1|key[1]; xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1); jmp .Leloop .align 16 .Ledone: xor @S[2],$t0 # SwapHalf xor @S[3],$t1 xor @S[0],$t2 xor @S[1],$t3 mov $t0,@S[0] mov $t1,@S[1] mov $t2,@S[2] mov $t3,@S[3] .byte 0xf3,0xc3 # rep ret .cfi_endproc .size _x86_64_Camellia_encrypt,.-_x86_64_Camellia_encrypt # V1.x API .globl Camellia_DecryptBlock .type Camellia_DecryptBlock,\@abi-omnipotent .align 16 Camellia_DecryptBlock: .cfi_startproc movl \$128,%eax subl $arg0d,%eax movl \$3,$arg0d adcl \$0,$arg0d # keyBitLength==128?3:4 jmp .Ldec_rounds .cfi_endproc .size Camellia_DecryptBlock,.-Camellia_DecryptBlock # V2 .globl Camellia_DecryptBlock_Rounds .type Camellia_DecryptBlock_Rounds,\@function,4 .align 16 .Ldec_rounds: Camellia_DecryptBlock_Rounds: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Ldec_prologue: #mov %rsi,$inp # put away arguments mov %rcx,$out mov %rdx,$keyend shl \$6,%edi # process grandRounds lea .LCamellia_SBOX(%rip),$Tbl lea ($keyend,%rdi),$key mov 0(%rsi),@S[0] # load plaintext mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] bswap @S[0] mov 12(%rsi),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_decrypt bswap @S[0] bswap @S[1] bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Ldec_epilogue: ret .cfi_endproc .size Camellia_DecryptBlock_Rounds,.-Camellia_DecryptBlock_Rounds .type _x86_64_Camellia_decrypt,\@abi-omnipotent .align 16 _x86_64_Camellia_decrypt: .cfi_startproc xor 0($key),@S[1] xor 4($key),@S[0] # ^=key[0-3] xor 8($key),@S[3] xor 12($key),@S[2] .align 16 .Ldloop: mov -8($key),$t1 # prefetch key[4-5] mov -4($key),$t0 ___ for ($i=0;$i<6;$i++) { Camellia_Feistel($i,-8); } $code.=<<___; lea -16*4($key),$key cmp $keyend,$key mov 0($key),$t3 # prefetch key[2-3] mov 4($key),$t2 je .Lddone and @S[0],$t0 or @S[3],$t3 rol \$1,$t0 xor $t3,@S[2] # s2^=s3|key[3]; xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1); and @S[2],$t2 or @S[1],$t1 rol \$1,$t2 xor $t1,@S[0] # s0^=s1|key[1]; xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1); jmp .Ldloop .align 16 .Lddone: xor @S[2],$t2 xor @S[3],$t3 xor @S[0],$t0 xor @S[1],$t1 mov $t2,@S[0] # SwapHalf mov $t3,@S[1] mov $t0,@S[2] mov $t1,@S[3] .byte 0xf3,0xc3 # rep ret .cfi_endproc .size _x86_64_Camellia_decrypt,.-_x86_64_Camellia_decrypt ___ sub _saveround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; if ($#T==3) { $code.=<<___; mov @T[1],`$bias+$rnd*8+0`($key) mov @T[0],`$bias+$rnd*8+4`($key) mov @T[3],`$bias+$rnd*8+8`($key) mov @T[2],`$bias+$rnd*8+12`($key) ___ } else { $code.=" mov @T[0],`$bias+$rnd*8+0`($key)\n"; $code.=" mov @T[1],`$bias+$rnd*8+8`($key)\n" if ($#T>=1); } } sub _loadround { my ($rnd,$key,@T)=@_; my $bias=int(@T[0])?shift(@T):0; $code.=" mov `$bias+$rnd*8+0`($key),@T[0]\n"; $code.=" mov `$bias+$rnd*8+8`($key),@T[1]\n" if ($#T>=1); } # shld is very slow on Intel EM64T family. Even on AMD it limits # instruction decode rate [because it's VectorPath] and consequently # performance... sub __rotl128 { my ($i0,$i1,$rot)=@_; if ($rot) { $code.=<<___; mov $i0,%r11 shld \$$rot,$i1,$i0 shld \$$rot,%r11,$i1 ___ } } # ... Implementing 128-bit rotate without shld gives 80% better # performance EM64T, +15% on AMD64 and only ~7% degradation on # Core2. This is therefore preferred. sub _rotl128 { my ($i0,$i1,$rot)=@_; if ($rot) { $code.=<<___; mov $i0,%r11 shl \$$rot,$i0 mov $i1,%r9 shr \$`64-$rot`,%r9 shr \$`64-$rot`,%r11 or %r9,$i0 shl \$$rot,$i1 or %r11,$i1 ___ } } { my $step=0; $code.=<<___; .globl Camellia_Ekeygen .type Camellia_Ekeygen,\@function,3 .align 16 Camellia_Ekeygen: .cfi_startproc push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lkey_prologue: mov %edi,${keyend}d # put away arguments, keyBitLength mov %rdx,$out # keyTable mov 0(%rsi),@S[0] # load 0-127 bits mov 4(%rsi),@S[1] mov 8(%rsi),@S[2] mov 12(%rsi),@S[3] bswap @S[0] bswap @S[1] bswap @S[2] bswap @S[3] ___ &_saveround (0,$out,@S); # KL<<<0 $code.=<<___; cmp \$128,$keyend # check keyBitLength je .L1st128 mov 16(%rsi),@S[0] # load 128-191 bits mov 20(%rsi),@S[1] cmp \$192,$keyend je .L1st192 mov 24(%rsi),@S[2] # load 192-255 bits mov 28(%rsi),@S[3] jmp .L1st256 .L1st192: mov @S[0],@S[2] mov @S[1],@S[3] not @S[2] not @S[3] .L1st256: bswap @S[0] bswap @S[1] bswap @S[2] bswap @S[3] ___ &_saveround (4,$out,@S); # temp storage for KR! $code.=<<___; xor 0($out),@S[1] # KR^KL xor 4($out),@S[0] xor 8($out),@S[3] xor 12($out),@S[2] .L1st128: lea .LCamellia_SIGMA(%rip),$key lea .LCamellia_SBOX(%rip),$Tbl mov 0($key),$t1 mov 4($key),$t0 ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); $code.=<<___; xor 0($out),@S[1] # ^KL xor 4($out),@S[0] xor 8($out),@S[3] xor 12($out),@S[2] ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); $code.=<<___; cmp \$128,$keyend jne .L2nd256 lea 128($out),$out # size optimization shl \$32,%r8 # @S[0]|| shl \$32,%r10 # @S[2]|| or %r9,%r8 # ||@S[1] or %r11,%r10 # ||@S[3] ___ &_loadround (0,$out,-128,"%rax","%rbx"); # KL &_saveround (2,$out,-128,"%r8","%r10"); # KA<<<0 &_rotl128 ("%rax","%rbx",15); &_saveround (4,$out,-128,"%rax","%rbx"); # KL<<<15 &_rotl128 ("%r8","%r10",15); &_saveround (6,$out,-128,"%r8","%r10"); # KA<<<15 &_rotl128 ("%r8","%r10",15); # 15+15=30 &_saveround (8,$out,-128,"%r8","%r10"); # KA<<<30 &_rotl128 ("%rax","%rbx",30); # 15+30=45 &_saveround (10,$out,-128,"%rax","%rbx"); # KL<<<45 &_rotl128 ("%r8","%r10",15); # 30+15=45 &_saveround (12,$out,-128,"%r8"); # KA<<<45 &_rotl128 ("%rax","%rbx",15); # 45+15=60 &_saveround (13,$out,-128,"%rbx"); # KL<<<60 &_rotl128 ("%r8","%r10",15); # 45+15=60 &_saveround (14,$out,-128,"%r8","%r10"); # KA<<<60 &_rotl128 ("%rax","%rbx",17); # 60+17=77 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<77 &_rotl128 ("%rax","%rbx",17); # 77+17=94 &_saveround (18,$out,-128,"%rax","%rbx"); # KL<<<94 &_rotl128 ("%r8","%r10",34); # 60+34=94 &_saveround (20,$out,-128,"%r8","%r10"); # KA<<<94 &_rotl128 ("%rax","%rbx",17); # 94+17=111 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<111 &_rotl128 ("%r8","%r10",17); # 94+17=111 &_saveround (24,$out,-128,"%r8","%r10"); # KA<<<111 $code.=<<___; mov \$3,%eax jmp .Ldone .align 16 .L2nd256: ___ &_saveround (6,$out,@S); # temp storage for KA! $code.=<<___; xor `4*8+0`($out),@S[1] # KA^KR xor `4*8+4`($out),@S[0] xor `5*8+0`($out),@S[3] xor `5*8+4`($out),@S[2] ___ &Camellia_Feistel($step++); &Camellia_Feistel($step++); &_loadround (0,$out,"%rax","%rbx"); # KL &_loadround (4,$out,"%rcx","%rdx"); # KR &_loadround (6,$out,"%r14","%r15"); # KA $code.=<<___; lea 128($out),$out # size optimization shl \$32,%r8 # @S[0]|| shl \$32,%r10 # @S[2]|| or %r9,%r8 # ||@S[1] or %r11,%r10 # ||@S[3] ___ &_saveround (2,$out,-128,"%r8","%r10"); # KB<<<0 &_rotl128 ("%rcx","%rdx",15); &_saveround (4,$out,-128,"%rcx","%rdx"); # KR<<<15 &_rotl128 ("%r14","%r15",15); &_saveround (6,$out,-128,"%r14","%r15"); # KA<<<15 &_rotl128 ("%rcx","%rdx",15); # 15+15=30 &_saveround (8,$out,-128,"%rcx","%rdx"); # KR<<<30 &_rotl128 ("%r8","%r10",30); &_saveround (10,$out,-128,"%r8","%r10"); # KB<<<30 &_rotl128 ("%rax","%rbx",45); &_saveround (12,$out,-128,"%rax","%rbx"); # KL<<<45 &_rotl128 ("%r14","%r15",30); # 15+30=45 &_saveround (14,$out,-128,"%r14","%r15"); # KA<<<45 &_rotl128 ("%rax","%rbx",15); # 45+15=60 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<60 &_rotl128 ("%rcx","%rdx",30); # 30+30=60 &_saveround (18,$out,-128,"%rcx","%rdx"); # KR<<<60 &_rotl128 ("%r8","%r10",30); # 30+30=60 &_saveround (20,$out,-128,"%r8","%r10"); # KB<<<60 &_rotl128 ("%rax","%rbx",17); # 60+17=77 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<77 &_rotl128 ("%r14","%r15",32); # 45+32=77 &_saveround (24,$out,-128,"%r14","%r15"); # KA<<<77 &_rotl128 ("%rcx","%rdx",34); # 60+34=94 &_saveround (26,$out,-128,"%rcx","%rdx"); # KR<<<94 &_rotl128 ("%r14","%r15",17); # 77+17=94 &_saveround (28,$out,-128,"%r14","%r15"); # KA<<<77 &_rotl128 ("%rax","%rbx",34); # 77+34=111 &_saveround (30,$out,-128,"%rax","%rbx"); # KL<<<111 &_rotl128 ("%r8","%r10",51); # 60+51=111 &_saveround (32,$out,-128,"%r8","%r10"); # KB<<<111 $code.=<<___; mov \$4,%eax .Ldone: mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%rbp .cfi_restore %rbp mov 32(%rsp),%rbx .cfi_restore %rbx lea 40(%rsp),%rsp .cfi_adjust_cfa_offset -40 .Lkey_epilogue: ret .cfi_endproc .size Camellia_Ekeygen,.-Camellia_Ekeygen ___ } @SBOX=( 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65, 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189, 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26, 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77, 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153, 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215, 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34, 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80, 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210, 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148, 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226, 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46, 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89, 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250, 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164, 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158); sub S1110 { my $i=shift; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$i<<8; sprintf("0x%08x",$i); } sub S4404 { my $i=shift; $i=($i<<1|$i>>7)&0xff; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$i; sprintf("0x%08x",$i); } sub S0222 { my $i=shift; $i=@SBOX[$i]; $i=($i<<1|$i>>7)&0xff; $i=$i<<16|$i<<8|$i; sprintf("0x%08x",$i); } sub S3033 { my $i=shift; $i=@SBOX[$i]; $i=($i>>1|$i<<7)&0xff; $i=$i<<24|$i<<8|$i; sprintf("0x%08x",$i); } $code.=<<___; .align 64 .LCamellia_SIGMA: .long 0x3bcc908b, 0xa09e667f, 0x4caa73b2, 0xb67ae858 .long 0xe94f82be, 0xc6ef372f, 0xf1d36f1c, 0x54ff53a5 .long 0xde682d1d, 0x10e527fa, 0xb3e6c1fd, 0xb05688c2 .long 0, 0, 0, 0 .LCamellia_SBOX: ___ # tables are interleaved, remember? sub data_word { $code.=".long\t".join(',',@_)."\n"; } for ($i=0;$i<256;$i++) { &data_word(&S1110($i),&S4404($i)); } for ($i=0;$i<256;$i++) { &data_word(&S0222($i),&S3033($i)); } # void Camellia_cbc_encrypt (const void char *inp, unsigned char *out, # size_t length, const CAMELLIA_KEY *key, # unsigned char *ivp,const int enc); { $_key="0(%rsp)"; $_end="8(%rsp)"; # inp+len&~15 $_res="16(%rsp)"; # len&15 $ivec="24(%rsp)"; $_ivp="40(%rsp)"; $_rsp="48(%rsp)"; $code.=<<___; .globl Camellia_cbc_encrypt .type Camellia_cbc_encrypt,\@function,6 .align 16 Camellia_cbc_encrypt: .cfi_startproc cmp \$0,%rdx je .Lcbc_abort push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lcbc_prologue: mov %rsp,%rbp .cfi_def_cfa_register %rbp sub \$64,%rsp and \$-64,%rsp # place stack frame just "above mod 1024" the key schedule, # this ensures that cache associativity suffices lea -64-63(%rcx),%r10 sub %rsp,%r10 neg %r10 and \$0x3C0,%r10 sub %r10,%rsp #add \$8,%rsp # 8 is reserved for callee's ra mov %rdi,$inp # inp argument mov %rsi,$out # out argument mov %r8,%rbx # ivp argument mov %rcx,$key # key argument mov 272(%rcx),${keyend}d # grandRounds mov %r8,$_ivp mov %rbp,$_rsp .cfi_cfa_expression $_rsp,deref,+56 .Lcbc_body: lea .LCamellia_SBOX(%rip),$Tbl mov \$32,%ecx .align 4 .Lcbc_prefetch_sbox: mov 0($Tbl),%rax mov 32($Tbl),%rsi mov 64($Tbl),%rdi mov 96($Tbl),%r11 lea 128($Tbl),$Tbl loop .Lcbc_prefetch_sbox sub \$4096,$Tbl shl \$6,$keyend mov %rdx,%rcx # len argument lea ($key,$keyend),$keyend cmp \$0,%r9d # enc argument je .LCBC_DECRYPT and \$-16,%rdx and \$15,%rcx # length residue lea ($inp,%rdx),%rdx mov $key,$_key mov %rdx,$_end mov %rcx,$_res cmp $inp,%rdx mov 0(%rbx),@S[0] # load IV mov 4(%rbx),@S[1] mov 8(%rbx),@S[2] mov 12(%rbx),@S[3] je .Lcbc_enc_tail jmp .Lcbc_eloop .align 16 .Lcbc_eloop: xor 0($inp),@S[0] xor 4($inp),@S[1] xor 8($inp),@S[2] bswap @S[0] xor 12($inp),@S[3] bswap @S[1] bswap @S[2] bswap @S[3] call _x86_64_Camellia_encrypt mov $_key,$key # "rewind" the key bswap @S[0] mov $_end,%rdx bswap @S[1] mov $_res,%rcx bswap @S[2] mov @S[0],0($out) bswap @S[3] mov @S[1],4($out) mov @S[2],8($out) lea 16($inp),$inp mov @S[3],12($out) cmp %rdx,$inp lea 16($out),$out jne .Lcbc_eloop cmp \$0,%rcx jne .Lcbc_enc_tail mov $_ivp,$out mov @S[0],0($out) # write out IV residue mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) jmp .Lcbc_done .align 16 .Lcbc_enc_tail: xor %rax,%rax mov %rax,0+$ivec mov %rax,8+$ivec mov %rax,$_res .Lcbc_enc_pushf: pushfq cld mov $inp,%rsi lea 8+$ivec,%rdi .long 0x9066A4F3 # rep movsb popfq .Lcbc_enc_popf: lea $ivec,$inp lea 16+$ivec,%rax mov %rax,$_end jmp .Lcbc_eloop # one more time .align 16 .LCBC_DECRYPT: xchg $key,$keyend add \$15,%rdx and \$15,%rcx # length residue and \$-16,%rdx mov $key,$_key lea ($inp,%rdx),%rdx mov %rdx,$_end mov %rcx,$_res mov (%rbx),%rax # load IV mov 8(%rbx),%rbx jmp .Lcbc_dloop .align 16 .Lcbc_dloop: mov 0($inp),@S[0] mov 4($inp),@S[1] mov 8($inp),@S[2] bswap @S[0] mov 12($inp),@S[3] bswap @S[1] mov %rax,0+$ivec # save IV to temporary storage bswap @S[2] mov %rbx,8+$ivec bswap @S[3] call _x86_64_Camellia_decrypt mov $_key,$key # "rewind" the key mov $_end,%rdx mov $_res,%rcx bswap @S[0] mov ($inp),%rax # load IV for next iteration bswap @S[1] mov 8($inp),%rbx bswap @S[2] xor 0+$ivec,@S[0] bswap @S[3] xor 4+$ivec,@S[1] xor 8+$ivec,@S[2] lea 16($inp),$inp xor 12+$ivec,@S[3] cmp %rdx,$inp je .Lcbc_ddone mov @S[0],0($out) mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) lea 16($out),$out jmp .Lcbc_dloop .align 16 .Lcbc_ddone: mov $_ivp,%rdx cmp \$0,%rcx jne .Lcbc_dec_tail mov @S[0],0($out) mov @S[1],4($out) mov @S[2],8($out) mov @S[3],12($out) mov %rax,(%rdx) # write out IV residue mov %rbx,8(%rdx) jmp .Lcbc_done .align 16 .Lcbc_dec_tail: mov @S[0],0+$ivec mov @S[1],4+$ivec mov @S[2],8+$ivec mov @S[3],12+$ivec .Lcbc_dec_pushf: pushfq cld lea 8+$ivec,%rsi lea ($out),%rdi .long 0x9066A4F3 # rep movsb popfq .Lcbc_dec_popf: mov %rax,(%rdx) # write out IV residue mov %rbx,8(%rdx) jmp .Lcbc_done .align 16 .Lcbc_done: mov $_rsp,%rcx .cfi_def_cfa %rcx,56 mov 0(%rcx),%r15 .cfi_restore %r15 mov 8(%rcx),%r14 .cfi_restore %r14 mov 16(%rcx),%r13 .cfi_restore %r13 mov 24(%rcx),%r12 .cfi_restore %r12 mov 32(%rcx),%rbp .cfi_restore %rbp mov 40(%rcx),%rbx .cfi_restore %rbx lea 48(%rcx),%rsp .cfi_def_cfa %rsp,8 .Lcbc_abort: ret .cfi_endproc .size Camellia_cbc_encrypt,.-Camellia_cbc_encrypt .asciz "Camellia for x86_64 by " ___ } # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, # CONTEXT *context,DISPATCHER_CONTEXT *disp) if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___; .extern __imp_RtlVirtualUnwind .type common_se_handler,\@abi-omnipotent .align 16 common_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq lea -64(%rsp),%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lin_prologue lea 40(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r13 mov -32(%rax),%r14 mov -40(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi jmp .Lcommon_seh_exit .size common_se_handler,.-common_se_handler .type cbc_se_handler,\@abi-omnipotent .align 16 cbc_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq lea -64(%rsp),%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip lea .Lcbc_prologue(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_prologue jb .Lin_cbc_prologue lea .Lcbc_body(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_body jb .Lin_cbc_frame_setup mov 152($context),%rax # pull context->Rsp lea .Lcbc_abort(%rip),%r10 cmp %r10,%rbx # context->Rip>=.Lcbc_abort jae .Lin_cbc_prologue # handle pushf/popf in Camellia_cbc_encrypt lea .Lcbc_enc_pushf(%rip),%r10 cmp %r10,%rbx # context->Rip<=.Lcbc_enc_pushf jbe .Lin_cbc_no_flag lea 8(%rax),%rax lea .Lcbc_enc_popf(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_enc_popf jb .Lin_cbc_no_flag lea -8(%rax),%rax lea .Lcbc_dec_pushf(%rip),%r10 cmp %r10,%rbx # context->Rip<=.Lcbc_dec_pushf jbe .Lin_cbc_no_flag lea 8(%rax),%rax lea .Lcbc_dec_popf(%rip),%r10 cmp %r10,%rbx # context->Rip<.Lcbc_dec_popf jb .Lin_cbc_no_flag lea -8(%rax),%rax .Lin_cbc_no_flag: mov 48(%rax),%rax # $_rsp lea 48(%rax),%rax .Lin_cbc_frame_setup: mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R15 .Lin_cbc_prologue: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi .align 4 .Lcommon_seh_exit: mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$`1232/8`,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch lea 64(%rsp),%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size cbc_se_handler,.-cbc_se_handler .section .pdata .align 4 .rva .LSEH_begin_Camellia_EncryptBlock_Rounds .rva .LSEH_end_Camellia_EncryptBlock_Rounds .rva .LSEH_info_Camellia_EncryptBlock_Rounds .rva .LSEH_begin_Camellia_DecryptBlock_Rounds .rva .LSEH_end_Camellia_DecryptBlock_Rounds .rva .LSEH_info_Camellia_DecryptBlock_Rounds .rva .LSEH_begin_Camellia_Ekeygen .rva .LSEH_end_Camellia_Ekeygen .rva .LSEH_info_Camellia_Ekeygen .rva .LSEH_begin_Camellia_cbc_encrypt .rva .LSEH_end_Camellia_cbc_encrypt .rva .LSEH_info_Camellia_cbc_encrypt .section .xdata .align 8 .LSEH_info_Camellia_EncryptBlock_Rounds: .byte 9,0,0,0 .rva common_se_handler .rva .Lenc_prologue,.Lenc_epilogue # HandlerData[] .LSEH_info_Camellia_DecryptBlock_Rounds: .byte 9,0,0,0 .rva common_se_handler .rva .Ldec_prologue,.Ldec_epilogue # HandlerData[] .LSEH_info_Camellia_Ekeygen: .byte 9,0,0,0 .rva common_se_handler .rva .Lkey_prologue,.Lkey_epilogue # HandlerData[] .LSEH_info_Camellia_cbc_encrypt: .byte 9,0,0,0 .rva cbc_se_handler ___ } $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;