#!/usr/bin/env perl ############################################################################## # # # Copyright (c) 2012, Intel Corporation # # # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions are # # met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in the # # documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Intel Corporation nor the names of its # # contributors may be used to endorse or promote products derived from # # this software without specific prior written permission. # # # # # # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY # # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR # # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # # ############################################################################## # Developers and authors: # # Shay Gueron (1, 2), and Vlad Krasnov (1) # # (1) Intel Corporation, Israel Development Center, Haifa, Israel # # (2) University of Haifa, Israel # ############################################################################## # Reference: # # [1] S. Gueron, V. Krasnov: "Software Implementation of Modular # # Exponentiation, Using Advanced Vector Instructions Architectures", # # F. Ozbudak and F. Rodriguez-Henriquez (Eds.): WAIFI 2012, LNCS 7369, # # pp. 119?135, 2012. Springer-Verlag Berlin Heidelberg 2012 # # [2] S. Gueron: "Efficient Software Implementations of Modular # # Exponentiation", Journal of Cryptographic Engineering 2:31-43 (2012). # # [3] S. Gueron, V. Krasnov: "Speeding up Big-numbers Squaring",IEEE # # Proceedings of 9th International Conference on Information Technology: # # New Generations (ITNG 2012), pp.821-823 (2012) # # [4] S. Gueron, V. Krasnov: "[PATCH] Efficient and side channel analysis # # resistant 1024-bit modular exponentiation, for optimizing RSA2048 # # on AVX2 capable x86_64 platforms", # # http://rt.openssl.org/Ticket/Display.html?id=2850&user=guest&pass=guest# ############################################################################## # # +13% improvement over original submission by # # rsa2048 sign/sec OpenSSL 1.0.1 scalar(*) this # 2.3GHz Haswell 621 765/+23% 1113/+79% # # (*) if system doesn't support AVX2, for reference purposes; $flavour = shift; $output = shift; if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.19) + ($1>=2.22); $addx = ($1>=2.23); } if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) { $avx = ($1>=2.09) + ($1>=2.10); $addx = ($1>=2.10); } if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && `ml64 2>&1` =~ /Version ([0-9]+)\./) { $avx = ($1>=10) + ($1>=11); $addx = ($1>=11); } if (!$avx && `$ENV{CC} -v 2>&1` =~ /LLVM ([3-9]\.[0-9]+)/) { $avx = ($1>=3.0) + ($1>=3.1); $addx = 0; } open OUT,"| $^X $xlate $flavour $output"; *STDOUT = *OUT; if ($avx>1) {{{ { # void AMS_WW( my $rp="%rdi"; # BN_ULONG *rp, my $ap="%rsi"; # const BN_ULONG *ap, my $np="%rdx"; # const BN_ULONG *np, my $n0="%ecx"; # const BN_ULONG n0, my $rep="%r8d"; # int repeat); # The registers that hold the accumulated redundant result # The AMM works on 1024 bit operands, and redundant word size is 29 # Therefore: ceil(1024/29)/4 = 9 my $ACC0="%ymm0"; my $ACC1="%ymm1"; my $ACC2="%ymm2"; my $ACC3="%ymm3"; my $ACC4="%ymm4"; my $ACC5="%ymm5"; my $ACC6="%ymm6"; my $ACC7="%ymm7"; my $ACC8="%ymm8"; my $ACC9="%ymm9"; # Registers that hold the broadcasted words of bp, currently used my $B1="%ymm10"; my $B2="%ymm11"; # Registers that hold the broadcasted words of Y, currently used my $Y1="%ymm12"; my $Y2="%ymm13"; # Helper registers my $TEMP1="%ymm14"; my $AND_MASK="%ymm15"; # alu registers that hold the first words of the ACC my $r0="%r9"; my $r1="%r10"; my $r2="%r11"; my $r3="%r12"; my $i="%r14d"; # loop counter my $tmp = "%r15"; my $FrameSize=32*18+32*8; # place for A^2 and 2*A my $aap=$r0; my $tp0="%rbx"; my $tp1=$r3; my $tpa=$tmp; $np="%r13"; # reassigned argument $code.=<<___; .text .globl rsaz_1024_sqr_avx2 .type rsaz_1024_sqr_avx2,\@function,5 .align 64 rsaz_1024_sqr_avx2: # 702 cycles, 14% faster than rsaz_1024_mul_avx2 lea (%rsp), %rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 vzeroupper ___ $code.=<<___ if ($win64); lea -0xa8(%rsp),%rsp vmovaps %xmm6,-0xd8(%rax) vmovaps %xmm7,-0xc8(%rax) vmovaps %xmm8,-0xb8(%rax) vmovaps %xmm9,-0xa8(%rax) vmovaps %xmm10,-0x98(%rax) vmovaps %xmm11,-0x88(%rax) vmovaps %xmm12,-0x78(%rax) vmovaps %xmm13,-0x68(%rax) vmovaps %xmm14,-0x58(%rax) vmovaps %xmm15,-0x48(%rax) .Lsqr_1024_body: ___ $code.=<<___; mov %rax,%rbp mov %rdx, $np # reassigned argument sub \$$FrameSize, %rsp mov $np, $tmp sub \$-128, $rp # size optimization sub \$-128, $ap sub \$-128, $np and \$4095, $tmp # see if $np crosses page add \$32*10, $tmp shr \$12, $tmp vpxor $ACC9,$ACC9,$ACC9 jz .Lsqr_1024_no_n_copy # unaligned 256-bit load that crosses page boundary can # cause >2x performance degradation here, so if $np does # cross page boundary, copy it to stack and make sure stack # frame doesn't... sub \$32*10,%rsp vmovdqu 32*0-128($np), $ACC0 and \$-2048, %rsp vmovdqu 32*1-128($np), $ACC1 vmovdqu 32*2-128($np), $ACC2 vmovdqu 32*3-128($np), $ACC3 vmovdqu 32*4-128($np), $ACC4 vmovdqu 32*5-128($np), $ACC5 vmovdqu 32*6-128($np), $ACC6 vmovdqu 32*7-128($np), $ACC7 vmovdqu 32*8-128($np), $ACC8 lea $FrameSize+128(%rsp),$np vmovdqu $ACC0, 32*0-128($np) vmovdqu $ACC1, 32*1-128($np) vmovdqu $ACC2, 32*2-128($np) vmovdqu $ACC3, 32*3-128($np) vmovdqu $ACC4, 32*4-128($np) vmovdqu $ACC5, 32*5-128($np) vmovdqu $ACC6, 32*6-128($np) vmovdqu $ACC7, 32*7-128($np) vmovdqu $ACC8, 32*8-128($np) vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero .Lsqr_1024_no_n_copy: and \$-1024, %rsp vmovdqu 32*1-128($ap), $ACC1 vmovdqu 32*2-128($ap), $ACC2 vmovdqu 32*3-128($ap), $ACC3 vmovdqu 32*4-128($ap), $ACC4 vmovdqu 32*5-128($ap), $ACC5 vmovdqu 32*6-128($ap), $ACC6 vmovdqu 32*7-128($ap), $ACC7 vmovdqu 32*8-128($ap), $ACC8 lea 192(%rsp), $tp0 # 64+128=192 vpbroadcastq .Land_mask(%rip), $AND_MASK jmp .LOOP_GRANDE_SQR_1024 .align 32 .LOOP_GRANDE_SQR_1024: lea 32*18+128(%rsp), $aap # size optimization lea 448(%rsp), $tp1 # 64+128+256=448 # the squaring is performed as described in Variant B of # "Speeding up Big-Number Squaring", so start by calculating # the A*2=A+A vector vpaddq $ACC1, $ACC1, $ACC1 vpbroadcastq 32*0-128($ap), $B1 vpaddq $ACC2, $ACC2, $ACC2 vmovdqa $ACC1, 32*0-128($aap) vpaddq $ACC3, $ACC3, $ACC3 vmovdqa $ACC2, 32*1-128($aap) vpaddq $ACC4, $ACC4, $ACC4 vmovdqa $ACC3, 32*2-128($aap) vpaddq $ACC5, $ACC5, $ACC5 vmovdqa $ACC4, 32*3-128($aap) vpaddq $ACC6, $ACC6, $ACC6 vmovdqa $ACC5, 32*4-128($aap) vpaddq $ACC7, $ACC7, $ACC7 vmovdqa $ACC6, 32*5-128($aap) vpaddq $ACC8, $ACC8, $ACC8 vmovdqa $ACC7, 32*6-128($aap) vpxor $ACC9, $ACC9, $ACC9 vmovdqa $ACC8, 32*7-128($aap) vpmuludq 32*0-128($ap), $B1, $ACC0 vpbroadcastq 32*1-128($ap), $B2 vmovdqu $ACC9, 32*9-192($tp0) # zero upper half vpmuludq $B1, $ACC1, $ACC1 vmovdqu $ACC9, 32*10-448($tp1) vpmuludq $B1, $ACC2, $ACC2 vmovdqu $ACC9, 32*11-448($tp1) vpmuludq $B1, $ACC3, $ACC3 vmovdqu $ACC9, 32*12-448($tp1) vpmuludq $B1, $ACC4, $ACC4 vmovdqu $ACC9, 32*13-448($tp1) vpmuludq $B1, $ACC5, $ACC5 vmovdqu $ACC9, 32*14-448($tp1) vpmuludq $B1, $ACC6, $ACC6 vmovdqu $ACC9, 32*15-448($tp1) vpmuludq $B1, $ACC7, $ACC7 vmovdqu $ACC9, 32*16-448($tp1) vpmuludq $B1, $ACC8, $ACC8 vpbroadcastq 32*2-128($ap), $B1 vmovdqu $ACC9, 32*17-448($tp1) mov $ap, $tpa mov \$4, $i jmp .Lsqr_entry_1024 ___ $TEMP0=$Y1; $TEMP2=$Y2; $code.=<<___; .align 32 .LOOP_SQR_1024: vpbroadcastq 32*1-128($tpa), $B2 vpmuludq 32*0-128($ap), $B1, $ACC0 vpaddq 32*0-192($tp0), $ACC0, $ACC0 vpmuludq 32*0-128($aap), $B1, $ACC1 vpaddq 32*1-192($tp0), $ACC1, $ACC1 vpmuludq 32*1-128($aap), $B1, $ACC2 vpaddq 32*2-192($tp0), $ACC2, $ACC2 vpmuludq 32*2-128($aap), $B1, $ACC3 vpaddq 32*3-192($tp0), $ACC3, $ACC3 vpmuludq 32*3-128($aap), $B1, $ACC4 vpaddq 32*4-192($tp0), $ACC4, $ACC4 vpmuludq 32*4-128($aap), $B1, $ACC5 vpaddq 32*5-192($tp0), $ACC5, $ACC5 vpmuludq 32*5-128($aap), $B1, $ACC6 vpaddq 32*6-192($tp0), $ACC6, $ACC6 vpmuludq 32*6-128($aap), $B1, $ACC7 vpaddq 32*7-192($tp0), $ACC7, $ACC7 vpmuludq 32*7-128($aap), $B1, $ACC8 vpbroadcastq 32*2-128($tpa), $B1 vpaddq 32*8-192($tp0), $ACC8, $ACC8 .Lsqr_entry_1024: vmovdqu $ACC0, 32*0-192($tp0) vmovdqu $ACC1, 32*1-192($tp0) vpmuludq 32*1-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*1-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq 32*2-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq 32*3-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*4-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq 32*5-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq 32*6-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*7-128($aap), $B2, $ACC0 vpbroadcastq 32*3-128($tpa), $B2 vpaddq 32*9-192($tp0), $ACC0, $ACC0 vmovdqu $ACC2, 32*2-192($tp0) vmovdqu $ACC3, 32*3-192($tp0) vpmuludq 32*2-128($ap), $B1, $TEMP2 vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq 32*2-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*3-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq 32*4-128($aap), $B1, $TEMP2 vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq 32*5-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*6-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC0, $ACC0 vpmuludq 32*7-128($aap), $B1, $ACC1 vpbroadcastq 32*4-128($tpa), $B1 vpaddq 32*10-448($tp1), $ACC1, $ACC1 vmovdqu $ACC4, 32*4-192($tp0) vmovdqu $ACC5, 32*5-192($tp0) vpmuludq 32*3-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC6, $ACC6 vpmuludq 32*3-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC7, $ACC7 vpmuludq 32*4-128($aap), $B2, $TEMP2 vpaddq $TEMP2, $ACC8, $ACC8 vpmuludq 32*5-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC0, $ACC0 vpmuludq 32*6-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC1, $ACC1 vpmuludq 32*7-128($aap), $B2, $ACC2 vpbroadcastq 32*5-128($tpa), $B2 vpaddq 32*11-448($tp1), $ACC2, $ACC2 vmovdqu $ACC6, 32*6-192($tp0) vmovdqu $ACC7, 32*7-192($tp0) vpmuludq 32*4-128($ap), $B1, $TEMP0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq 32*4-128($aap), $B1, $TEMP1 vpaddq $TEMP1, $ACC0, $ACC0 vpmuludq 32*5-128($aap), $B1, $TEMP2 vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*6-128($aap), $B1, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*7-128($aap), $B1, $ACC3 vpbroadcastq 32*6-128($tpa), $B1 vpaddq 32*12-448($tp1), $ACC3, $ACC3 vmovdqu $ACC8, 32*8-192($tp0) vmovdqu $ACC0, 32*9-192($tp0) lea 8($tp0), $tp0 vpmuludq 32*5-128($ap), $B2, $TEMP2 vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*5-128($aap), $B2, $TEMP0 vpaddq $TEMP0, $ACC2, $ACC2 vpmuludq 32*6-128($aap), $B2, $TEMP1 vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq 32*7-128($aap), $B2, $ACC4 vpbroadcastq 32*7-128($tpa), $B2 vpaddq 32*13-448($tp1), $ACC4, $ACC4 vmovdqu $ACC1, 32*10-448($tp1) vmovdqu $ACC2, 32*11-448($tp1) vpmuludq 32*6-128($ap), $B1, $TEMP0 vpaddq $TEMP0, $ACC3, $ACC3 vpmuludq 32*6-128($aap), $B1, $TEMP1 vpbroadcastq 32*8-128($tpa), $ACC0 # borrow $ACC0 for $B1 vpaddq $TEMP1, $ACC4, $ACC4 vpmuludq 32*7-128($aap), $B1, $ACC5 vpbroadcastq 32*0+8-128($tpa), $B1 # for next iteration vpaddq 32*14-448($tp1), $ACC5, $ACC5 vmovdqu $ACC3, 32*12-448($tp1) vmovdqu $ACC4, 32*13-448($tp1) lea 8($tpa), $tpa vpmuludq 32*7-128($ap), $B2, $TEMP0 vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq 32*7-128($aap), $B2, $ACC6 vpaddq 32*15-448($tp1), $ACC6, $ACC6 vpmuludq 32*8-128($ap), $ACC0, $ACC7 vmovdqu $ACC5, 32*14-448($tp1) vpaddq 32*16-448($tp1), $ACC7, $ACC7 vmovdqu $ACC6, 32*15-448($tp1) vmovdqu $ACC7, 32*16-448($tp1) lea 8($tp1), $tp1 dec $i jnz .LOOP_SQR_1024 ___ $ZERO = $ACC9; $TEMP0 = $B1; $TEMP2 = $B2; $TEMP3 = $Y1; $TEMP4 = $Y2; $code.=<<___; #we need to fix indexes 32-39 to avoid overflow vmovdqu 32*8(%rsp), $ACC8 # 32*8-192($tp0), vmovdqu 32*9(%rsp), $ACC1 # 32*9-192($tp0) vmovdqu 32*10(%rsp), $ACC2 # 32*10-192($tp0) lea 192(%rsp), $tp0 # 64+128=192 vpsrlq \$29, $ACC8, $TEMP1 vpand $AND_MASK, $ACC8, $ACC8 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpermq \$0x93, $TEMP1, $TEMP1 vpxor $ZERO, $ZERO, $ZERO vpermq \$0x93, $TEMP2, $TEMP2 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC8, $ACC8 vpblendd \$3, $TEMP2, $ZERO, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpaddq $TEMP2, $ACC2, $ACC2 vmovdqu $ACC1, 32*9-192($tp0) vmovdqu $ACC2, 32*10-192($tp0) mov (%rsp), %rax mov 8(%rsp), $r1 mov 16(%rsp), $r2 mov 24(%rsp), $r3 vmovdqu 32*1(%rsp), $ACC1 vmovdqu 32*2-192($tp0), $ACC2 vmovdqu 32*3-192($tp0), $ACC3 vmovdqu 32*4-192($tp0), $ACC4 vmovdqu 32*5-192($tp0), $ACC5 vmovdqu 32*6-192($tp0), $ACC6 vmovdqu 32*7-192($tp0), $ACC7 mov %rax, $r0 imull $n0, %eax and \$0x1fffffff, %eax vmovd %eax, $Y1 mov %rax, %rdx imulq -128($np), %rax vpbroadcastq $Y1, $Y1 add %rax, $r0 mov %rdx, %rax imulq 8-128($np), %rax shr \$29, $r0 add %rax, $r1 mov %rdx, %rax imulq 16-128($np), %rax add $r0, $r1 add %rax, $r2 imulq 24-128($np), %rdx add %rdx, $r3 mov $r1, %rax imull $n0, %eax and \$0x1fffffff, %eax mov \$9, $i jmp .LOOP_REDUCE_1024 .align 32 .LOOP_REDUCE_1024: vmovd %eax, $Y2 vpbroadcastq $Y2, $Y2 vpmuludq 32*1-128($np), $Y1, $TEMP0 mov %rax, %rdx imulq -128($np), %rax vpaddq $TEMP0, $ACC1, $ACC1 add %rax, $r1 vpmuludq 32*2-128($np), $Y1, $TEMP1 mov %rdx, %rax imulq 8-128($np), %rax vpaddq $TEMP1, $ACC2, $ACC2 vpmuludq 32*3-128($np), $Y1, $TEMP2 .byte 0x67 add %rax, $r2 .byte 0x67 mov %rdx, %rax imulq 16-128($np), %rax shr \$29, $r1 vpaddq $TEMP2, $ACC3, $ACC3 vpmuludq 32*4-128($np), $Y1, $TEMP0 add %rax, $r3 add $r1, $r2 vpaddq $TEMP0, $ACC4, $ACC4 vpmuludq 32*5-128($np), $Y1, $TEMP1 mov $r2, %rax imull $n0, %eax vpaddq $TEMP1, $ACC5, $ACC5 vpmuludq 32*6-128($np), $Y1, $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP2, $ACC6, $ACC6 vpmuludq 32*7-128($np), $Y1, $TEMP0 vpaddq $TEMP0, $ACC7, $ACC7 vpmuludq 32*8-128($np), $Y1, $TEMP1 vmovd %eax, $Y1 #vmovdqu 32*1-8-128($np), $TEMP2 # moved below vpaddq $TEMP1, $ACC8, $ACC8 #vmovdqu 32*2-8-128($np), $TEMP0 # moved below vpbroadcastq $Y1, $Y1 vpmuludq 32*1-8-128($np), $Y2, $TEMP2 # see above vmovdqu 32*3-8-128($np), $TEMP1 mov %rax, %rdx imulq -128($np), %rax vpaddq $TEMP2, $ACC1, $ACC1 vpmuludq 32*2-8-128($np), $Y2, $TEMP0 # see above vmovdqu 32*4-8-128($np), $TEMP2 add %rax, $r2 mov %rdx, %rax imulq 8-128($np), %rax vpaddq $TEMP0, $ACC2, $ACC2 add $r3, %rax shr \$29, $r2 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*5-8-128($np), $TEMP0 add $r2, %rax vpaddq $TEMP1, $ACC3, $ACC3 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*6-8-128($np), $TEMP1 .byte 0x67 mov %rax, $r3 imull $n0, %eax vpaddq $TEMP2, $ACC4, $ACC4 vpmuludq $Y2, $TEMP0, $TEMP0 .byte 0xc4,0x41,0x7e,0x6f,0x9d,0x58,0x00,0x00,0x00 # vmovdqu 32*7-8-128($np), $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP0, $ACC5, $ACC5 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*8-8-128($np), $TEMP0 vpaddq $TEMP1, $ACC6, $ACC6 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*9-8-128($np), $ACC9 vmovd %eax, $ACC0 # borrow ACC0 for Y2 imulq -128($np), %rax vpaddq $TEMP2, $ACC7, $ACC7 vpmuludq $Y2, $TEMP0, $TEMP0 vmovdqu 32*1-16-128($np), $TEMP1 vpbroadcastq $ACC0, $ACC0 vpaddq $TEMP0, $ACC8, $ACC8 vpmuludq $Y2, $ACC9, $ACC9 vmovdqu 32*2-16-128($np), $TEMP2 add %rax, $r3 ___ ($ACC0,$Y2)=($Y2,$ACC0); $code.=<<___; vmovdqu 32*1-24-128($np), $ACC0 vpmuludq $Y1, $TEMP1, $TEMP1 vmovdqu 32*3-16-128($np), $TEMP0 vpaddq $TEMP1, $ACC1, $ACC1 vpmuludq $Y2, $ACC0, $ACC0 vpmuludq $Y1, $TEMP2, $TEMP2 .byte 0xc4,0x41,0x7e,0x6f,0xb5,0xf0,0xff,0xff,0xff # vmovdqu 32*4-16-128($np), $TEMP1 vpaddq $ACC1, $ACC0, $ACC0 vpaddq $TEMP2, $ACC2, $ACC2 vpmuludq $Y1, $TEMP0, $TEMP0 vmovdqu 32*5-16-128($np), $TEMP2 .byte 0x67 vmovq $ACC0, %rax vmovdqu $ACC0, (%rsp) # transfer $r0-$r3 vpaddq $TEMP0, $ACC3, $ACC3 vpmuludq $Y1, $TEMP1, $TEMP1 vmovdqu 32*6-16-128($np), $TEMP0 vpaddq $TEMP1, $ACC4, $ACC4 vpmuludq $Y1, $TEMP2, $TEMP2 vmovdqu 32*7-16-128($np), $TEMP1 vpaddq $TEMP2, $ACC5, $ACC5 vpmuludq $Y1, $TEMP0, $TEMP0 vmovdqu 32*8-16-128($np), $TEMP2 vpaddq $TEMP0, $ACC6, $ACC6 vpmuludq $Y1, $TEMP1, $TEMP1 shr \$29, $r3 vmovdqu 32*9-16-128($np), $TEMP0 add $r3, %rax vpaddq $TEMP1, $ACC7, $ACC7 vpmuludq $Y1, $TEMP2, $TEMP2 #vmovdqu 32*2-24-128($np), $TEMP1 # moved below mov %rax, $r0 imull $n0, %eax vpaddq $TEMP2, $ACC8, $ACC8 vpmuludq $Y1, $TEMP0, $TEMP0 and \$0x1fffffff, %eax vmovd %eax, $Y1 vmovdqu 32*3-24-128($np), $TEMP2 .byte 0x67 vpaddq $TEMP0, $ACC9, $ACC9 vpbroadcastq $Y1, $Y1 vpmuludq 32*2-24-128($np), $Y2, $TEMP1 # see above vmovdqu 32*4-24-128($np), $TEMP0 mov %rax, %rdx imulq -128($np), %rax mov 8(%rsp), $r1 vpaddq $TEMP1, $ACC2, $ACC1 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*5-24-128($np), $TEMP1 add %rax, $r0 mov %rdx, %rax imulq 8-128($np), %rax .byte 0x67 shr \$29, $r0 mov 16(%rsp), $r2 vpaddq $TEMP2, $ACC3, $ACC2 vpmuludq $Y2, $TEMP0, $TEMP0 vmovdqu 32*6-24-128($np), $TEMP2 add %rax, $r1 mov %rdx, %rax imulq 16-128($np), %rax vpaddq $TEMP0, $ACC4, $ACC3 vpmuludq $Y2, $TEMP1, $TEMP1 vmovdqu 32*7-24-128($np), $TEMP0 imulq 24-128($np), %rdx # future $r3 add %rax, $r2 lea ($r0,$r1), %rax vpaddq $TEMP1, $ACC5, $ACC4 vpmuludq $Y2, $TEMP2, $TEMP2 vmovdqu 32*8-24-128($np), $TEMP1 mov %rax, $r1 imull $n0, %eax vpmuludq $Y2, $TEMP0, $TEMP0 vpaddq $TEMP2, $ACC6, $ACC5 vmovdqu 32*9-24-128($np), $TEMP2 and \$0x1fffffff, %eax vpaddq $TEMP0, $ACC7, $ACC6 vpmuludq $Y2, $TEMP1, $TEMP1 add 24(%rsp), %rdx vpaddq $TEMP1, $ACC8, $ACC7 vpmuludq $Y2, $TEMP2, $TEMP2 vpaddq $TEMP2, $ACC9, $ACC8 vmovq $r3, $ACC9 mov %rdx, $r3 dec $i jnz .LOOP_REDUCE_1024 ___ ($ACC0,$Y2)=($Y2,$ACC0); $code.=<<___; lea 448(%rsp), $tp1 # size optimization vpaddq $ACC9, $Y2, $ACC0 vpxor $ZERO, $ZERO, $ZERO vpaddq 32*9-192($tp0), $ACC0, $ACC0 vpaddq 32*10-448($tp1), $ACC1, $ACC1 vpaddq 32*11-448($tp1), $ACC2, $ACC2 vpaddq 32*12-448($tp1), $ACC3, $ACC3 vpaddq 32*13-448($tp1), $ACC4, $ACC4 vpaddq 32*14-448($tp1), $ACC5, $ACC5 vpaddq 32*15-448($tp1), $ACC6, $ACC6 vpaddq 32*16-448($tp1), $ACC7, $ACC7 vpaddq 32*17-448($tp1), $ACC8, $ACC8 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vmovdqu $ACC0, 32*0-128($rp) vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vmovdqu $ACC1, 32*1-128($rp) vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vmovdqu $ACC2, 32*2-128($rp) vpaddq $TEMP4, $ACC4, $ACC4 vmovdqu $ACC3, 32*3-128($rp) ___ $TEMP5=$ACC0; $code.=<<___; vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vmovdqu $ACC4, 32*4-128($rp) vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vmovdqu $ACC5, 32*5-128($rp) vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vmovdqu $ACC6, 32*6-128($rp) vpaddq $TEMP4, $ACC8, $ACC8 vmovdqu $ACC7, 32*7-128($rp) vmovdqu $ACC8, 32*8-128($rp) mov $rp, $ap dec $rep jne .LOOP_GRANDE_SQR_1024 vzeroall mov %rbp, %rax ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 mov -40(%rax),%r14 mov -32(%rax),%r13 mov -24(%rax),%r12 mov -16(%rax),%rbp mov -8(%rax),%rbx lea (%rax),%rsp # restore %rsp .Lsqr_1024_epilogue: ret .size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2 ___ } { # void AMM_WW( my $rp="%rdi"; # BN_ULONG *rp, my $ap="%rsi"; # const BN_ULONG *ap, my $bp="%rdx"; # const BN_ULONG *bp, my $np="%rcx"; # const BN_ULONG *np, my $n0="%r8d"; # unsigned int n0); # The registers that hold the accumulated redundant result # The AMM works on 1024 bit operands, and redundant word size is 29 # Therefore: ceil(1024/29)/4 = 9 my $ACC0="%ymm0"; my $ACC1="%ymm1"; my $ACC2="%ymm2"; my $ACC3="%ymm3"; my $ACC4="%ymm4"; my $ACC5="%ymm5"; my $ACC6="%ymm6"; my $ACC7="%ymm7"; my $ACC8="%ymm8"; my $ACC9="%ymm9"; # Registers that hold the broadcasted words of multiplier, currently used my $Bi="%ymm10"; my $Yi="%ymm11"; # Helper registers my $TEMP0=$ACC0; my $TEMP1="%ymm12"; my $TEMP2="%ymm13"; my $ZERO="%ymm14"; my $AND_MASK="%ymm15"; # alu registers that hold the first words of the ACC my $r0="%r9"; my $r1="%r10"; my $r2="%r11"; my $r3="%r12"; my $i="%r14d"; my $tmp="%r15"; $bp="%r13"; # reassigned argument $code.=<<___; .globl rsaz_1024_mul_avx2 .type rsaz_1024_mul_avx2,\@function,5 .align 64 rsaz_1024_mul_avx2: lea (%rsp), %rax push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 ___ $code.=<<___ if ($win64); vzeroupper lea -0xa8(%rsp),%rsp vmovaps %xmm6,-0xd8(%rax) vmovaps %xmm7,-0xc8(%rax) vmovaps %xmm8,-0xb8(%rax) vmovaps %xmm9,-0xa8(%rax) vmovaps %xmm10,-0x98(%rax) vmovaps %xmm11,-0x88(%rax) vmovaps %xmm12,-0x78(%rax) vmovaps %xmm13,-0x68(%rax) vmovaps %xmm14,-0x58(%rax) vmovaps %xmm15,-0x48(%rax) .Lmul_1024_body: ___ $code.=<<___; mov %rax,%rbp vzeroall mov %rdx, $bp # reassigned argument sub \$64,%rsp # unaligned 256-bit load that crosses page boundary can # cause severe performance degradation here, so if $ap does # cross page boundary, swap it with $bp [meaning that caller # is advised to lay down $ap and $bp next to each other, so # that only one can cross page boundary]. .byte 0x67,0x67 mov $ap, $tmp and \$4095, $tmp add \$32*10, $tmp shr \$12, $tmp mov $ap, $tmp cmovnz $bp, $ap cmovnz $tmp, $bp mov $np, $tmp sub \$-128,$ap # size optimization sub \$-128,$np sub \$-128,$rp and \$4095, $tmp # see if $np crosses page add \$32*10, $tmp .byte 0x67,0x67 shr \$12, $tmp jz .Lmul_1024_no_n_copy # unaligned 256-bit load that crosses page boundary can # cause severe performance degradation here, so if $np does # cross page boundary, copy it to stack and make sure stack # frame doesn't... sub \$32*10,%rsp vmovdqu 32*0-128($np), $ACC0 and \$-512, %rsp vmovdqu 32*1-128($np), $ACC1 vmovdqu 32*2-128($np), $ACC2 vmovdqu 32*3-128($np), $ACC3 vmovdqu 32*4-128($np), $ACC4 vmovdqu 32*5-128($np), $ACC5 vmovdqu 32*6-128($np), $ACC6 vmovdqu 32*7-128($np), $ACC7 vmovdqu 32*8-128($np), $ACC8 lea 64+128(%rsp),$np vmovdqu $ACC0, 32*0-128($np) vpxor $ACC0, $ACC0, $ACC0 vmovdqu $ACC1, 32*1-128($np) vpxor $ACC1, $ACC1, $ACC1 vmovdqu $ACC2, 32*2-128($np) vpxor $ACC2, $ACC2, $ACC2 vmovdqu $ACC3, 32*3-128($np) vpxor $ACC3, $ACC3, $ACC3 vmovdqu $ACC4, 32*4-128($np) vpxor $ACC4, $ACC4, $ACC4 vmovdqu $ACC5, 32*5-128($np) vpxor $ACC5, $ACC5, $ACC5 vmovdqu $ACC6, 32*6-128($np) vpxor $ACC6, $ACC6, $ACC6 vmovdqu $ACC7, 32*7-128($np) vpxor $ACC7, $ACC7, $ACC7 vmovdqu $ACC8, 32*8-128($np) vmovdqa $ACC0, $ACC8 vmovdqu $ACC9, 32*9-128($np) # $ACC9 is zero after vzeroall .Lmul_1024_no_n_copy: and \$-64,%rsp mov ($bp), %rbx vpbroadcastq ($bp), $Bi vmovdqu $ACC0, (%rsp) # clear top of stack xor $r0, $r0 .byte 0x67 xor $r1, $r1 xor $r2, $r2 xor $r3, $r3 vmovdqu .Land_mask(%rip), $AND_MASK mov \$9, $i jmp .Loop_mul_1024 .align 32 .Loop_mul_1024: vpsrlq \$29, $ACC3, $ACC9 # correct $ACC3(*) mov %rbx, %rax imulq -128($ap), %rax add $r0, %rax mov %rbx, $r1 imulq 8-128($ap), $r1 add 8(%rsp), $r1 mov %rax, $r0 imull $n0, %eax and \$0x1fffffff, %eax mov %rbx, $r2 imulq 16-128($ap), $r2 add 16(%rsp), $r2 mov %rbx, $r3 imulq 24-128($ap), $r3 add 24(%rsp), $r3 vpmuludq 32*1-128($ap),$Bi,$TEMP0 vmovd %eax, $Yi vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq 32*2-128($ap),$Bi,$TEMP1 vpbroadcastq $Yi, $Yi vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq 32*3-128($ap),$Bi,$TEMP2 vpand $AND_MASK, $ACC3, $ACC3 # correct $ACC3 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq 32*4-128($ap),$Bi,$TEMP0 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq 32*5-128($ap),$Bi,$TEMP1 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq 32*6-128($ap),$Bi,$TEMP2 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq 32*7-128($ap),$Bi,$TEMP0 vpermq \$0x93, $ACC9, $ACC9 # correct $ACC3 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq 32*8-128($ap),$Bi,$TEMP1 vpbroadcastq 8($bp), $Bi vpaddq $TEMP1,$ACC8,$ACC8 mov %rax,%rdx imulq -128($np),%rax add %rax,$r0 mov %rdx,%rax imulq 8-128($np),%rax add %rax,$r1 mov %rdx,%rax imulq 16-128($np),%rax add %rax,$r2 shr \$29, $r0 imulq 24-128($np),%rdx add %rdx,$r3 add $r0, $r1 vpmuludq 32*1-128($np),$Yi,$TEMP2 vmovq $Bi, %rbx vpaddq $TEMP2,$ACC1,$ACC1 vpmuludq 32*2-128($np),$Yi,$TEMP0 vpaddq $TEMP0,$ACC2,$ACC2 vpmuludq 32*3-128($np),$Yi,$TEMP1 vpaddq $TEMP1,$ACC3,$ACC3 vpmuludq 32*4-128($np),$Yi,$TEMP2 vpaddq $TEMP2,$ACC4,$ACC4 vpmuludq 32*5-128($np),$Yi,$TEMP0 vpaddq $TEMP0,$ACC5,$ACC5 vpmuludq 32*6-128($np),$Yi,$TEMP1 vpaddq $TEMP1,$ACC6,$ACC6 vpmuludq 32*7-128($np),$Yi,$TEMP2 vpblendd \$3, $ZERO, $ACC9, $ACC9 # correct $ACC3 vpaddq $TEMP2,$ACC7,$ACC7 vpmuludq 32*8-128($np),$Yi,$TEMP0 vpaddq $ACC9, $ACC3, $ACC3 # correct $ACC3 vpaddq $TEMP0,$ACC8,$ACC8 mov %rbx, %rax imulq -128($ap),%rax add %rax,$r1 vmovdqu -8+32*1-128($ap),$TEMP1 mov %rbx, %rax imulq 8-128($ap),%rax add %rax,$r2 vmovdqu -8+32*2-128($ap),$TEMP2 mov $r1, %rax imull $n0, %eax and \$0x1fffffff, %eax imulq 16-128($ap),%rbx add %rbx,$r3 vpmuludq $Bi,$TEMP1,$TEMP1 vmovd %eax, $Yi vmovdqu -8+32*3-128($ap),$TEMP0 vpaddq $TEMP1,$ACC1,$ACC1 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq $Yi, $Yi vmovdqu -8+32*4-128($ap),$TEMP1 vpaddq $TEMP2,$ACC2,$ACC2 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -8+32*5-128($ap),$TEMP2 vpaddq $TEMP0,$ACC3,$ACC3 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -8+32*6-128($ap),$TEMP0 vpaddq $TEMP1,$ACC4,$ACC4 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -8+32*7-128($ap),$TEMP1 vpaddq $TEMP2,$ACC5,$ACC5 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -8+32*8-128($ap),$TEMP2 vpaddq $TEMP0,$ACC6,$ACC6 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -8+32*9-128($ap),$ACC9 vpaddq $TEMP1,$ACC7,$ACC7 vpmuludq $Bi,$TEMP2,$TEMP2 vpaddq $TEMP2,$ACC8,$ACC8 vpmuludq $Bi,$ACC9,$ACC9 vpbroadcastq 16($bp), $Bi mov %rax,%rdx imulq -128($np),%rax add %rax,$r1 vmovdqu -8+32*1-128($np),$TEMP0 mov %rdx,%rax imulq 8-128($np),%rax add %rax,$r2 vmovdqu -8+32*2-128($np),$TEMP1 shr \$29, $r1 imulq 16-128($np),%rdx add %rdx,$r3 add $r1, $r2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -8+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -8+32*4-128($np),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -8+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -8+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -8+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -8+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -8+32*9-128($np),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Yi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Yi,$TEMP2,$TEMP2 vpaddq $TEMP2,$ACC9,$ACC9 vmovdqu -16+32*1-128($ap),$TEMP0 mov %rbx,%rax imulq -128($ap),%rax add $r2,%rax vmovdqu -16+32*2-128($ap),$TEMP1 mov %rax,$r2 imull $n0, %eax and \$0x1fffffff, %eax imulq 8-128($ap),%rbx add %rbx,$r3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovd %eax, $Yi vmovdqu -16+32*3-128($ap),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Bi,$TEMP1,$TEMP1 vpbroadcastq $Yi, $Yi vmovdqu -16+32*4-128($ap),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -16+32*5-128($ap),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -16+32*6-128($ap),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -16+32*7-128($ap),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -16+32*8-128($ap),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -16+32*9-128($ap),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Bi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq 24($bp), $Bi vpaddq $TEMP2,$ACC9,$ACC9 vmovdqu -16+32*1-128($np),$TEMP0 mov %rax,%rdx imulq -128($np),%rax add %rax,$r2 vmovdqu -16+32*2-128($np),$TEMP1 imulq 8-128($np),%rdx add %rdx,$r3 shr \$29, $r2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -16+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -16+32*4-128($np),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -16+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -16+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -16+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -16+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -16+32*9-128($np),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -24+32*1-128($ap),$TEMP0 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*2-128($ap),$TEMP1 vpaddq $TEMP2,$ACC9,$ACC9 add $r2, $r3 imulq -128($ap),%rbx add %rbx,$r3 mov $r3, %rax imull $n0, %eax and \$0x1fffffff, %eax vpmuludq $Bi,$TEMP0,$TEMP0 vmovd %eax, $Yi vmovdqu -24+32*3-128($ap),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC1 vpmuludq $Bi,$TEMP1,$TEMP1 vpbroadcastq $Yi, $Yi vmovdqu -24+32*4-128($ap),$TEMP0 vpaddq $TEMP1,$ACC2,$ACC2 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -24+32*5-128($ap),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC3 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -24+32*6-128($ap),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC4 vpmuludq $Bi,$TEMP1,$TEMP1 vmovdqu -24+32*7-128($ap),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC5 vpmuludq $Bi,$TEMP2,$TEMP2 vmovdqu -24+32*8-128($ap),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC6 vpmuludq $Bi,$TEMP0,$TEMP0 vmovdqu -24+32*9-128($ap),$TEMP2 vpaddq $TEMP0,$ACC7,$ACC7 vpmuludq $Bi,$TEMP1,$TEMP1 vpaddq $TEMP1,$ACC8,$ACC8 vpmuludq $Bi,$TEMP2,$TEMP2 vpbroadcastq 32($bp), $Bi vpaddq $TEMP2,$ACC9,$ACC9 add \$32, $bp # $bp++ vmovdqu -24+32*1-128($np),$TEMP0 imulq -128($np),%rax add %rax,$r3 shr \$29, $r3 vmovdqu -24+32*2-128($np),$TEMP1 vpmuludq $Yi,$TEMP0,$TEMP0 vmovq $Bi, %rbx vmovdqu -24+32*3-128($np),$TEMP2 vpaddq $TEMP0,$ACC1,$ACC0 # $ACC0==$TEMP0 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu $ACC0, (%rsp) # transfer $r0-$r3 vpaddq $TEMP1,$ACC2,$ACC1 vmovdqu -24+32*4-128($np),$TEMP0 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*5-128($np),$TEMP1 vpaddq $TEMP2,$ACC3,$ACC2 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -24+32*6-128($np),$TEMP2 vpaddq $TEMP0,$ACC4,$ACC3 vpmuludq $Yi,$TEMP1,$TEMP1 vmovdqu -24+32*7-128($np),$TEMP0 vpaddq $TEMP1,$ACC5,$ACC4 vpmuludq $Yi,$TEMP2,$TEMP2 vmovdqu -24+32*8-128($np),$TEMP1 vpaddq $TEMP2,$ACC6,$ACC5 vpmuludq $Yi,$TEMP0,$TEMP0 vmovdqu -24+32*9-128($np),$TEMP2 mov $r3, $r0 vpaddq $TEMP0,$ACC7,$ACC6 vpmuludq $Yi,$TEMP1,$TEMP1 add (%rsp), $r0 vpaddq $TEMP1,$ACC8,$ACC7 vpmuludq $Yi,$TEMP2,$TEMP2 vmovq $r3, $TEMP1 vpaddq $TEMP2,$ACC9,$ACC8 dec $i jnz .Loop_mul_1024 ___ # (*) Original implementation was correcting ACC1-ACC3 for overflow # after 7 loop runs, or after 28 iterations, or 56 additions. # But as we underutilize resources, it's possible to correct in # each iteration with marginal performance loss. But then, as # we do it in each iteration, we can correct less digits, and # avoid performance penalties completely. Also note that we # correct only three digits out of four. This works because # most significant digit is subjected to less additions. $TEMP0 = $ACC9; $TEMP3 = $Bi; $TEMP4 = $Yi; $code.=<<___; vpermq \$0, $AND_MASK, $AND_MASK vpaddq (%rsp), $TEMP1, $ACC0 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpermq \$0x93, $TEMP4, $TEMP4 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vpsrlq \$29, $ACC0, $TEMP1 vpand $AND_MASK, $ACC0, $ACC0 vpsrlq \$29, $ACC1, $TEMP2 vpand $AND_MASK, $ACC1, $ACC1 vpsrlq \$29, $ACC2, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC2, $ACC2 vpsrlq \$29, $ACC3, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC3, $ACC3 vpermq \$0x93, $TEMP3, $TEMP3 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC0, $ACC0 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC1, $ACC1 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC2, $ACC2 vpblendd \$3, $TEMP4, $ZERO, $TEMP4 vpaddq $TEMP3, $ACC3, $ACC3 vpaddq $TEMP4, $ACC4, $ACC4 vmovdqu $ACC0, 0-128($rp) vmovdqu $ACC1, 32-128($rp) vmovdqu $ACC2, 64-128($rp) vmovdqu $ACC3, 96-128($rp) ___ $TEMP5=$ACC0; $code.=<<___; vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vpsrlq \$29, $ACC4, $TEMP1 vpand $AND_MASK, $ACC4, $ACC4 vpsrlq \$29, $ACC5, $TEMP2 vpand $AND_MASK, $ACC5, $ACC5 vpsrlq \$29, $ACC6, $TEMP3 vpermq \$0x93, $TEMP1, $TEMP1 vpand $AND_MASK, $ACC6, $ACC6 vpsrlq \$29, $ACC7, $TEMP4 vpermq \$0x93, $TEMP2, $TEMP2 vpand $AND_MASK, $ACC7, $ACC7 vpsrlq \$29, $ACC8, $TEMP5 vpermq \$0x93, $TEMP3, $TEMP3 vpand $AND_MASK, $ACC8, $ACC8 vpermq \$0x93, $TEMP4, $TEMP4 vpblendd \$3, $ZERO, $TEMP1, $TEMP0 vpermq \$0x93, $TEMP5, $TEMP5 vpblendd \$3, $TEMP1, $TEMP2, $TEMP1 vpaddq $TEMP0, $ACC4, $ACC4 vpblendd \$3, $TEMP2, $TEMP3, $TEMP2 vpaddq $TEMP1, $ACC5, $ACC5 vpblendd \$3, $TEMP3, $TEMP4, $TEMP3 vpaddq $TEMP2, $ACC6, $ACC6 vpblendd \$3, $TEMP4, $TEMP5, $TEMP4 vpaddq $TEMP3, $ACC7, $ACC7 vpaddq $TEMP4, $ACC8, $ACC8 vmovdqu $ACC4, 128-128($rp) vmovdqu $ACC5, 160-128($rp) vmovdqu $ACC6, 192-128($rp) vmovdqu $ACC7, 224-128($rp) vmovdqu $ACC8, 256-128($rp) vzeroupper mov %rbp, %rax ___ $code.=<<___ if ($win64); movaps -0xd8(%rax),%xmm6 movaps -0xc8(%rax),%xmm7 movaps -0xb8(%rax),%xmm8 movaps -0xa8(%rax),%xmm9 movaps -0x98(%rax),%xmm10 movaps -0x88(%rax),%xmm11 movaps -0x78(%rax),%xmm12 movaps -0x68(%rax),%xmm13 movaps -0x58(%rax),%xmm14 movaps -0x48(%rax),%xmm15 ___ $code.=<<___; mov -48(%rax),%r15 mov -40(%rax),%r14 mov -32(%rax),%r13 mov -24(%rax),%r12 mov -16(%rax),%rbp mov -8(%rax),%rbx lea (%rax),%rsp # restore %rsp .Lmul_1024_epilogue: ret .size rsaz_1024_mul_avx2,.-rsaz_1024_mul_avx2 ___ } { my ($out,$inp) = $win64 ? ("%rcx","%rdx") : ("%rdi","%rsi"); my @T = map("%r$_",(8..11)); $code.=<<___; .globl rsaz_1024_red2norm_avx2 .type rsaz_1024_red2norm_avx2,\@abi-omnipotent .align 32 rsaz_1024_red2norm_avx2: sub \$-128,$inp # size optimization xor %rax,%rax ___ for ($j=0,$i=0; $i<16; $i++) { my $k=0; while (29*$j<64*($i+1)) { # load data till boundary $code.=" mov `8*$j-128`($inp), @T[0]\n"; $j++; $k++; push(@T,shift(@T)); } $l=$k; while ($k>1) { # shift loaded data but last value $code.=" shl \$`29*($j-$k)`,@T[-$k]\n"; $k--; } $code.=<<___; # shift last value mov @T[-1], @T[0] shl \$`29*($j-1)`, @T[-1] shr \$`-29*($j-1)`, @T[0] ___ while ($l) { # accumulate all values $code.=" add @T[-$l], %rax\n"; $l--; } $code.=<<___; adc \$0, @T[0] # consume eventual carry mov %rax, 8*$i($out) mov @T[0], %rax ___ push(@T,shift(@T)); } $code.=<<___; ret .size rsaz_1024_red2norm_avx2,.-rsaz_1024_red2norm_avx2 .globl rsaz_1024_norm2red_avx2 .type rsaz_1024_norm2red_avx2,\@abi-omnipotent .align 32 rsaz_1024_norm2red_avx2: sub \$-128,$out # size optimization mov ($inp),@T[0] mov \$0x1fffffff,%eax ___ for ($j=0,$i=0; $i<16; $i++) { $code.=" mov `8*($i+1)`($inp),@T[1]\n" if ($i<15); $code.=" xor @T[1],@T[1]\n" if ($i==15); my $k=1; while (29*($j+1)<64*($i+1)) { $code.=<<___; mov @T[0],@T[-$k] shr \$`29*$j`,@T[-$k] and %rax,@T[-$k] # &0x1fffffff mov @T[-$k],`8*$j-128`($out) ___ $j++; $k++; } $code.=<<___; shrd \$`29*$j`,@T[1],@T[0] and %rax,@T[0] mov @T[0],`8*$j-128`($out) ___ $j++; push(@T,shift(@T)); } $code.=<<___; mov @T[0],`8*$j-128`($out) # zero mov @T[0],`8*($j+1)-128`($out) mov @T[0],`8*($j+2)-128`($out) mov @T[0],`8*($j+3)-128`($out) ret .size rsaz_1024_norm2red_avx2,.-rsaz_1024_norm2red_avx2 ___ } { my ($out,$inp,$power) = $win64 ? ("%rcx","%rdx","%r8d") : ("%rdi","%rsi","%edx"); $code.=<<___; .globl rsaz_1024_scatter5_avx2 .type rsaz_1024_scatter5_avx2,\@abi-omnipotent .align 32 rsaz_1024_scatter5_avx2: vzeroupper vmovdqu .Lscatter_permd(%rip),%ymm5 shl \$4,$power lea ($out,$power),$out mov \$9,%eax jmp .Loop_scatter_1024 .align 32 .Loop_scatter_1024: vmovdqu ($inp),%ymm0 lea 32($inp),$inp vpermd %ymm0,%ymm5,%ymm0 vmovdqu %xmm0,($out) lea 16*32($out),$out dec %eax jnz .Loop_scatter_1024 vzeroupper ret .size rsaz_1024_scatter5_avx2,.-rsaz_1024_scatter5_avx2 .globl rsaz_1024_gather5_avx2 .type rsaz_1024_gather5_avx2,\@abi-omnipotent .align 32 rsaz_1024_gather5_avx2: ___ $code.=<<___ if ($win64); lea -0x88(%rsp),%rax vzeroupper .LSEH_begin_rsaz_1024_gather5: # I can't trust assembler to use specific encoding:-( .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp .byte 0xc5,0xf8,0x29,0x70,0xe0 #vmovaps %xmm6,-0x20(%rax) .byte 0xc5,0xf8,0x29,0x78,0xf0 #vmovaps %xmm7,-0x10(%rax) .byte 0xc5,0x78,0x29,0x40,0x00 #vmovaps %xmm8,0(%rax) .byte 0xc5,0x78,0x29,0x48,0x10 #vmovaps %xmm9,0x10(%rax) .byte 0xc5,0x78,0x29,0x50,0x20 #vmovaps %xmm10,0x20(%rax) .byte 0xc5,0x78,0x29,0x58,0x30 #vmovaps %xmm11,0x30(%rax) .byte 0xc5,0x78,0x29,0x60,0x40 #vmovaps %xmm12,0x40(%rax) .byte 0xc5,0x78,0x29,0x68,0x50 #vmovaps %xmm13,0x50(%rax) .byte 0xc5,0x78,0x29,0x70,0x60 #vmovaps %xmm14,0x60(%rax) .byte 0xc5,0x78,0x29,0x78,0x70 #vmovaps %xmm15,0x70(%rax) ___ $code.=<<___; lea .Lgather_table(%rip),%r11 mov $power,%eax and \$3,$power shr \$2,%eax # cache line number shl \$4,$power # offset within cache line vmovdqu -32(%r11),%ymm7 # .Lgather_permd vpbroadcastb 8(%r11,%rax), %xmm8 vpbroadcastb 7(%r11,%rax), %xmm9 vpbroadcastb 6(%r11,%rax), %xmm10 vpbroadcastb 5(%r11,%rax), %xmm11 vpbroadcastb 4(%r11,%rax), %xmm12 vpbroadcastb 3(%r11,%rax), %xmm13 vpbroadcastb 2(%r11,%rax), %xmm14 vpbroadcastb 1(%r11,%rax), %xmm15 lea 64($inp,$power),$inp mov \$64,%r11 # size optimization mov \$9,%eax jmp .Loop_gather_1024 .align 32 .Loop_gather_1024: vpand -64($inp), %xmm8,%xmm0 vpand ($inp), %xmm9,%xmm1 vpand 64($inp), %xmm10,%xmm2 vpand ($inp,%r11,2), %xmm11,%xmm3 vpor %xmm0,%xmm1,%xmm1 vpand 64($inp,%r11,2), %xmm12,%xmm4 vpor %xmm2,%xmm3,%xmm3 vpand ($inp,%r11,4), %xmm13,%xmm5 vpor %xmm1,%xmm3,%xmm3 vpand 64($inp,%r11,4), %xmm14,%xmm6 vpor %xmm4,%xmm5,%xmm5 vpand -128($inp,%r11,8), %xmm15,%xmm2 lea ($inp,%r11,8),$inp vpor %xmm3,%xmm5,%xmm5 vpor %xmm2,%xmm6,%xmm6 vpor %xmm5,%xmm6,%xmm6 vpermd %ymm6,%ymm7,%ymm6 vmovdqu %ymm6,($out) lea 32($out),$out dec %eax jnz .Loop_gather_1024 vpxor %ymm0,%ymm0,%ymm0 vmovdqu %ymm0,($out) vzeroupper ___ $code.=<<___ if ($win64); movaps (%rsp),%xmm6 movaps 0x10(%rsp),%xmm7 movaps 0x20(%rsp),%xmm8 movaps 0x30(%rsp),%xmm9 movaps 0x40(%rsp),%xmm10 movaps 0x50(%rsp),%xmm11 movaps 0x60(%rsp),%xmm12 movaps 0x70(%rsp),%xmm13 movaps 0x80(%rsp),%xmm14 movaps 0x90(%rsp),%xmm15 lea 0xa8(%rsp),%rsp .LSEH_end_rsaz_1024_gather5: ___ $code.=<<___; ret .size rsaz_1024_gather5_avx2,.-rsaz_1024_gather5_avx2 ___ } $code.=<<___; .extern OPENSSL_ia32cap_P .globl rsaz_avx2_eligible .type rsaz_avx2_eligible,\@abi-omnipotent .align 32 rsaz_avx2_eligible: mov OPENSSL_ia32cap_P+8(%rip),%eax ___ $code.=<<___ if ($addx); mov \$`1<<8|1<<19`,%ecx mov \$0,%edx and %eax,%ecx cmp \$`1<<8|1<<19`,%ecx # check for BMI2+AD*X cmove %edx,%eax ___ $code.=<<___; and \$`1<<5`,%eax shr \$5,%eax ret .size rsaz_avx2_eligible,.-rsaz_avx2_eligible .align 64 .Land_mask: .quad 0x1fffffff,0x1fffffff,0x1fffffff,-1 .Lscatter_permd: .long 0,2,4,6,7,7,7,7 .Lgather_permd: .long 0,7,1,7,2,7,3,7 .Lgather_table: .byte 0,0,0,0,0,0,0,0, 0xff,0,0,0,0,0,0,0 .align 64 ___ if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___ .extern __imp_RtlVirtualUnwind .type rsaz_se_handler,\@abi-omnipotent .align 16 rsaz_se_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->RipRsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=epilogue label jae .Lcommon_seh_tail mov 160($context),%rax # pull context->Rbp mov -48(%rax),%r15 mov -40(%rax),%r14 mov -32(%rax),%r13 mov -24(%rax),%r12 mov -16(%rax),%rbp mov -8(%rax),%rbx mov %r15,240($context) mov %r14,232($context) mov %r13,224($context) mov %r12,216($context) mov %rbp,160($context) mov %rbx,144($context) lea -0xd8(%rax),%rsi # %xmm save area lea 512($context),%rdi # & context.Xmm6 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax) .long 0xa548f3fc # cld; rep movsq .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size rsaz_se_handler,.-rsaz_se_handler .section .pdata .align 4 .rva .LSEH_begin_rsaz_1024_sqr_avx2 .rva .LSEH_end_rsaz_1024_sqr_avx2 .rva .LSEH_info_rsaz_1024_sqr_avx2 .rva .LSEH_begin_rsaz_1024_mul_avx2 .rva .LSEH_end_rsaz_1024_mul_avx2 .rva .LSEH_info_rsaz_1024_mul_avx2 .rva .LSEH_begin_rsaz_1024_gather5 .rva .LSEH_end_rsaz_1024_gather5 .rva .LSEH_info_rsaz_1024_gather5 .section .xdata .align 8 .LSEH_info_rsaz_1024_sqr_avx2: .byte 9,0,0,0 .rva rsaz_se_handler .rva .Lsqr_1024_body,.Lsqr_1024_epilogue .LSEH_info_rsaz_1024_mul_avx2: .byte 9,0,0,0 .rva rsaz_se_handler .rva .Lmul_1024_body,.Lmul_1024_epilogue .LSEH_info_rsaz_1024_gather5: .byte 0x01,0x33,0x16,0x00 .byte 0x36,0xf8,0x09,0x00 #vmovaps 0x90(rsp),xmm15 .byte 0x31,0xe8,0x08,0x00 #vmovaps 0x80(rsp),xmm14 .byte 0x2c,0xd8,0x07,0x00 #vmovaps 0x70(rsp),xmm13 .byte 0x27,0xc8,0x06,0x00 #vmovaps 0x60(rsp),xmm12 .byte 0x22,0xb8,0x05,0x00 #vmovaps 0x50(rsp),xmm11 .byte 0x1d,0xa8,0x04,0x00 #vmovaps 0x40(rsp),xmm10 .byte 0x18,0x98,0x03,0x00 #vmovaps 0x30(rsp),xmm9 .byte 0x13,0x88,0x02,0x00 #vmovaps 0x20(rsp),xmm8 .byte 0x0e,0x78,0x01,0x00 #vmovaps 0x10(rsp),xmm7 .byte 0x09,0x68,0x00,0x00 #vmovaps 0x00(rsp),xmm6 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8 ___ } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval($1)/ge; s/\b(sh[rl]d?\s+\$)(-?[0-9]+)/$1.$2%64/ge or s/\b(vmov[dq])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vmovdqu)\b(.+)%x%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpinsr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpextr[qd])\b(.+)%ymm([0-9]+)/$1$2%xmm$3/go or s/\b(vpbroadcast[qd]\s+)%ymm([0-9]+)/$1%xmm$2/go; print $_,"\n"; } }}} else {{{ print <<___; # assembler is too old .text .globl rsaz_avx2_eligible .type rsaz_avx2_eligible,\@abi-omnipotent rsaz_avx2_eligible: xor %eax,%eax ret .size rsaz_avx2_eligible,.-rsaz_avx2_eligible .globl rsaz_1024_sqr_avx2 .globl rsaz_1024_mul_avx2 .globl rsaz_1024_norm2red_avx2 .globl rsaz_1024_red2norm_avx2 .globl rsaz_1024_scatter5_avx2 .globl rsaz_1024_gather5_avx2 .type rsaz_1024_sqr_avx2,\@abi-omnipotent rsaz_1024_sqr_avx2: rsaz_1024_mul_avx2: rsaz_1024_norm2red_avx2: rsaz_1024_red2norm_avx2: rsaz_1024_scatter5_avx2: rsaz_1024_gather5_avx2: .byte 0x0f,0x0b # ud2 ret .size rsaz_1024_sqr_avx2,.-rsaz_1024_sqr_avx2 ___ }}} close STDOUT;