/* ssl/ssl_ciph.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #ifndef OPENSSL_NO_COMP #include #endif #ifndef OPENSSL_NO_ENGINE #include #endif #include "ssl_locl.h" #define SSL_ENC_DES_IDX 0 #define SSL_ENC_3DES_IDX 1 #define SSL_ENC_RC4_IDX 2 #define SSL_ENC_RC2_IDX 3 #define SSL_ENC_IDEA_IDX 4 #define SSL_ENC_NULL_IDX 5 #define SSL_ENC_AES128_IDX 6 #define SSL_ENC_AES256_IDX 7 #define SSL_ENC_CAMELLIA128_IDX 8 #define SSL_ENC_CAMELLIA256_IDX 9 #define SSL_ENC_GOST89_IDX 10 #define SSL_ENC_SEED_IDX 11 #define SSL_ENC_AES128GCM_IDX 12 #define SSL_ENC_AES256GCM_IDX 13 #define SSL_ENC_NUM_IDX 14 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL }; #define SSL_COMP_NULL_IDX 0 #define SSL_COMP_ZLIB_IDX 1 #define SSL_COMP_NUM_IDX 2 static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL; #define SSL_MD_MD5_IDX 0 #define SSL_MD_SHA1_IDX 1 #define SSL_MD_GOST94_IDX 2 #define SSL_MD_GOST89MAC_IDX 3 #define SSL_MD_SHA256_IDX 4 #define SSL_MD_SHA384_IDX 5 /*Constant SSL_MAX_DIGEST equal to size of digests array should be * defined in the * ssl_locl.h */ #define SSL_MD_NUM_IDX SSL_MAX_DIGEST static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={ NULL,NULL,NULL,NULL,NULL,NULL }; /* PKEY_TYPE for GOST89MAC is known in advance, but, because * implementation is engine-provided, we'll fill it only if * corresponding EVP_PKEY_METHOD is found */ static int ssl_mac_pkey_id[SSL_MD_NUM_IDX]={ EVP_PKEY_HMAC,EVP_PKEY_HMAC,EVP_PKEY_HMAC,NID_undef, EVP_PKEY_HMAC,EVP_PKEY_HMAC }; static int ssl_mac_secret_size[SSL_MD_NUM_IDX]={ 0,0,0,0,0,0 }; static int ssl_handshake_digest_flag[SSL_MD_NUM_IDX]={ SSL_HANDSHAKE_MAC_MD5,SSL_HANDSHAKE_MAC_SHA, SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256, SSL_HANDSHAKE_MAC_SHA384 }; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int dead; struct cipher_order_st *next,*prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[]={ /* "ALL" doesn't include eNULL (must be specifically enabled) */ {0,SSL_TXT_ALL,0, 0,0,~SSL_eNULL,0,0,0,0,0,0}, /* "COMPLEMENTOFALL" */ {0,SSL_TXT_CMPALL,0, 0,0,SSL_eNULL,0,0,0,0,0,0}, /* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in ALL!) */ {0,SSL_TXT_CMPDEF,0, SSL_kEDH|SSL_kEECDH,SSL_aNULL,~SSL_eNULL,0,0,0,0,0,0}, /* key exchange aliases * (some of those using only a single bit here combine * multiple key exchange algs according to the RFCs, * e.g. kEDH combines DHE_DSS and DHE_RSA) */ {0,SSL_TXT_kRSA,0, SSL_kRSA, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kDHr,0, SSL_kDHr, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kDHd,0, SSL_kDHd, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kDH,0, SSL_kDHr|SSL_kDHd,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kEDH,0, SSL_kEDH, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kDHE,0, SSL_kEDH, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_DH,0, SSL_kDHr|SSL_kDHd|SSL_kEDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kKRB5,0, SSL_kKRB5, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kECDHr,0, SSL_kECDHr,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kECDHe,0, SSL_kECDHe,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kECDH,0, SSL_kECDHr|SSL_kECDHe,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kEECDH,0, SSL_kEECDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kECDHE,0, SSL_kEECDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_ECDH,0, SSL_kECDHr|SSL_kECDHe|SSL_kEECDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kPSK,0, SSL_kPSK, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kSRP,0, SSL_kSRP, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kGOST,0, SSL_kGOST,0,0,0,0,0,0,0,0}, /* server authentication aliases */ {0,SSL_TXT_aRSA,0, 0,SSL_aRSA, 0,0,0,0,0,0,0}, {0,SSL_TXT_aDSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0}, {0,SSL_TXT_DSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0}, {0,SSL_TXT_aKRB5,0, 0,SSL_aKRB5, 0,0,0,0,0,0,0}, {0,SSL_TXT_aNULL,0, 0,SSL_aNULL, 0,0,0,0,0,0,0}, {0,SSL_TXT_aDH,0, 0,SSL_aDH, 0,0,0,0,0,0,0}, /* no such ciphersuites supported! */ {0,SSL_TXT_aECDH,0, 0,SSL_aECDH, 0,0,0,0,0,0,0}, {0,SSL_TXT_aECDSA,0, 0,SSL_aECDSA,0,0,0,0,0,0,0}, {0,SSL_TXT_ECDSA,0, 0,SSL_aECDSA, 0,0,0,0,0,0,0}, {0,SSL_TXT_aPSK,0, 0,SSL_aPSK, 0,0,0,0,0,0,0}, {0,SSL_TXT_aGOST94,0,0,SSL_aGOST94,0,0,0,0,0,0,0}, {0,SSL_TXT_aGOST01,0,0,SSL_aGOST01,0,0,0,0,0,0,0}, {0,SSL_TXT_aGOST,0,0,SSL_aGOST94|SSL_aGOST01,0,0,0,0,0,0,0}, {0,SSL_TXT_aSRP,0, 0,SSL_aSRP, 0,0,0,0,0,0,0}, /* aliases combining key exchange and server authentication */ {0,SSL_TXT_EDH,0, SSL_kEDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_DHE,0, SSL_kEDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_EECDH,0, SSL_kEECDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_ECDHE,0, SSL_kEECDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_NULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0}, {0,SSL_TXT_KRB5,0, SSL_kKRB5,SSL_aKRB5,0,0,0,0,0,0,0}, {0,SSL_TXT_RSA,0, SSL_kRSA,SSL_aRSA,0,0,0,0,0,0,0}, {0,SSL_TXT_ADH,0, SSL_kEDH,SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_AECDH,0, SSL_kEECDH,SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_PSK,0, SSL_kPSK,SSL_aPSK,0,0,0,0,0,0,0}, {0,SSL_TXT_SRP,0, SSL_kSRP,0,0,0,0,0,0,0,0}, /* symmetric encryption aliases */ {0,SSL_TXT_DES,0, 0,0,SSL_DES, 0,0,0,0,0,0}, {0,SSL_TXT_3DES,0, 0,0,SSL_3DES, 0,0,0,0,0,0}, {0,SSL_TXT_RC4,0, 0,0,SSL_RC4, 0,0,0,0,0,0}, {0,SSL_TXT_RC2,0, 0,0,SSL_RC2, 0,0,0,0,0,0}, {0,SSL_TXT_IDEA,0, 0,0,SSL_IDEA, 0,0,0,0,0,0}, {0,SSL_TXT_SEED,0, 0,0,SSL_SEED, 0,0,0,0,0,0}, {0,SSL_TXT_eNULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0}, {0,SSL_TXT_AES128,0, 0,0,SSL_AES128|SSL_AES128GCM,0,0,0,0,0,0}, {0,SSL_TXT_AES256,0, 0,0,SSL_AES256|SSL_AES256GCM,0,0,0,0,0,0}, {0,SSL_TXT_AES,0, 0,0,SSL_AES,0,0,0,0,0,0}, {0,SSL_TXT_AES_GCM,0, 0,0,SSL_AES128GCM|SSL_AES256GCM,0,0,0,0,0,0}, {0,SSL_TXT_CAMELLIA128,0,0,0,SSL_CAMELLIA128,0,0,0,0,0,0}, {0,SSL_TXT_CAMELLIA256,0,0,0,SSL_CAMELLIA256,0,0,0,0,0,0}, {0,SSL_TXT_CAMELLIA ,0,0,0,SSL_CAMELLIA128|SSL_CAMELLIA256,0,0,0,0,0,0}, /* MAC aliases */ {0,SSL_TXT_MD5,0, 0,0,0,SSL_MD5, 0,0,0,0,0}, {0,SSL_TXT_SHA1,0, 0,0,0,SSL_SHA1, 0,0,0,0,0}, {0,SSL_TXT_SHA,0, 0,0,0,SSL_SHA1, 0,0,0,0,0}, {0,SSL_TXT_GOST94,0, 0,0,0,SSL_GOST94, 0,0,0,0,0}, {0,SSL_TXT_GOST89MAC,0, 0,0,0,SSL_GOST89MAC, 0,0,0,0,0}, {0,SSL_TXT_SHA256,0, 0,0,0,SSL_SHA256, 0,0,0,0,0}, {0,SSL_TXT_SHA384,0, 0,0,0,SSL_SHA384, 0,0,0,0,0}, /* protocol version aliases */ {0,SSL_TXT_SSLV2,0, 0,0,0,0,SSL_SSLV2, 0,0,0,0}, {0,SSL_TXT_SSLV3,0, 0,0,0,0,SSL_SSLV3, 0,0,0,0}, {0,SSL_TXT_TLSV1,0, 0,0,0,0,SSL_TLSV1, 0,0,0,0}, {0,SSL_TXT_TLSV1_2,0, 0,0,0,0,SSL_TLSV1_2, 0,0,0,0}, /* export flag */ {0,SSL_TXT_EXP,0, 0,0,0,0,0,SSL_EXPORT,0,0,0}, {0,SSL_TXT_EXPORT,0, 0,0,0,0,0,SSL_EXPORT,0,0,0}, /* strength classes */ {0,SSL_TXT_EXP40,0, 0,0,0,0,0,SSL_EXP40, 0,0,0}, {0,SSL_TXT_EXP56,0, 0,0,0,0,0,SSL_EXP56, 0,0,0}, {0,SSL_TXT_LOW,0, 0,0,0,0,0,SSL_LOW, 0,0,0}, {0,SSL_TXT_MEDIUM,0, 0,0,0,0,0,SSL_MEDIUM,0,0,0}, {0,SSL_TXT_HIGH,0, 0,0,0,0,0,SSL_HIGH, 0,0,0}, /* FIPS 140-2 approved ciphersuite */ {0,SSL_TXT_FIPS,0, 0,0,~SSL_eNULL,0,0,SSL_FIPS, 0,0,0}, /* "DHE-" aliases to "EDH-" labels (for forward compatibility) */ {0,SSL3_TXT_DHE_DSS_DES_40_CBC_SHA,0, SSL_kDHE,SSL_aDSS,SSL_DES,SSL_SHA1,SSL_SSLV3,SSL_EXPORT|SSL_EXP40,0,0,0,}, {0,SSL3_TXT_DHE_DSS_DES_64_CBC_SHA,0, SSL_kDHE,SSL_aDSS,SSL_DES,SSL_SHA1,SSL_SSLV3,SSL_NOT_EXP|SSL_LOW,0,0,0,}, {0,SSL3_TXT_DHE_DSS_DES_192_CBC3_SHA,0, SSL_kDHE,SSL_aDSS,SSL_3DES,SSL_SHA1,SSL_SSLV3,SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,0,0,0,}, {0,SSL3_TXT_DHE_RSA_DES_40_CBC_SHA,0, SSL_kDHE,SSL_aRSA,SSL_DES,SSL_SHA1,SSL_SSLV3,SSL_EXPORT|SSL_EXP40,0,0,0,}, {0,SSL3_TXT_DHE_RSA_DES_64_CBC_SHA,0, SSL_kDHE,SSL_aRSA,SSL_DES,SSL_SHA1,SSL_SSLV3,SSL_NOT_EXP|SSL_LOW,0,0,0,}, {0,SSL3_TXT_DHE_RSA_DES_192_CBC3_SHA,0, SSL_kDHE,SSL_aRSA,SSL_3DES,SSL_SHA1,SSL_SSLV3,SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,0,0,0,}, }; /* Search for public key algorithm with given name and * return its pkey_id if it is available. Otherwise return 0 */ #ifdef OPENSSL_NO_ENGINE static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id=0; ameth = EVP_PKEY_asn1_find_str(NULL,pkey_name,-1); if (ameth) { EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth); } return pkey_id; } #else static int get_optional_pkey_id(const char *pkey_name) { const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *tmpeng = NULL; int pkey_id=0; ameth = EVP_PKEY_asn1_find_str(&tmpeng,pkey_name,-1); if (ameth) { EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth); } if (tmpeng) ENGINE_finish(tmpeng); return pkey_id; } #endif void ssl_load_ciphers(void) { ssl_cipher_methods[SSL_ENC_DES_IDX]= EVP_get_cipherbyname(SN_des_cbc); ssl_cipher_methods[SSL_ENC_3DES_IDX]= EVP_get_cipherbyname(SN_des_ede3_cbc); ssl_cipher_methods[SSL_ENC_RC4_IDX]= EVP_get_cipherbyname(SN_rc4); ssl_cipher_methods[SSL_ENC_RC2_IDX]= EVP_get_cipherbyname(SN_rc2_cbc); #ifndef OPENSSL_NO_IDEA ssl_cipher_methods[SSL_ENC_IDEA_IDX]= EVP_get_cipherbyname(SN_idea_cbc); #else ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL; #endif ssl_cipher_methods[SSL_ENC_AES128_IDX]= EVP_get_cipherbyname(SN_aes_128_cbc); ssl_cipher_methods[SSL_ENC_AES256_IDX]= EVP_get_cipherbyname(SN_aes_256_cbc); ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]= EVP_get_cipherbyname(SN_camellia_128_cbc); ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]= EVP_get_cipherbyname(SN_camellia_256_cbc); ssl_cipher_methods[SSL_ENC_GOST89_IDX]= EVP_get_cipherbyname(SN_gost89_cnt); ssl_cipher_methods[SSL_ENC_SEED_IDX]= EVP_get_cipherbyname(SN_seed_cbc); ssl_cipher_methods[SSL_ENC_AES128GCM_IDX]= EVP_get_cipherbyname(SN_aes_128_gcm); ssl_cipher_methods[SSL_ENC_AES256GCM_IDX]= EVP_get_cipherbyname(SN_aes_256_gcm); ssl_digest_methods[SSL_MD_MD5_IDX]= EVP_get_digestbyname(SN_md5); ssl_mac_secret_size[SSL_MD_MD5_IDX]= EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]); OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0); ssl_digest_methods[SSL_MD_SHA1_IDX]= EVP_get_digestbyname(SN_sha1); ssl_mac_secret_size[SSL_MD_SHA1_IDX]= EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]); OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0); ssl_digest_methods[SSL_MD_GOST94_IDX]= EVP_get_digestbyname(SN_id_GostR3411_94); if (ssl_digest_methods[SSL_MD_GOST94_IDX]) { ssl_mac_secret_size[SSL_MD_GOST94_IDX]= EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]); OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0); } ssl_digest_methods[SSL_MD_GOST89MAC_IDX]= EVP_get_digestbyname(SN_id_Gost28147_89_MAC); ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac"); if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) { ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX]=32; } ssl_digest_methods[SSL_MD_SHA256_IDX]= EVP_get_digestbyname(SN_sha256); ssl_mac_secret_size[SSL_MD_SHA256_IDX]= EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]); ssl_digest_methods[SSL_MD_SHA384_IDX]= EVP_get_digestbyname(SN_sha384); ssl_mac_secret_size[SSL_MD_SHA384_IDX]= EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]); } #ifndef OPENSSL_NO_COMP static int sk_comp_cmp(const SSL_COMP * const *a, const SSL_COMP * const *b) { return((*a)->id-(*b)->id); } static void load_builtin_compressions(void) { int got_write_lock = 0; CRYPTO_r_lock(CRYPTO_LOCK_SSL); if (ssl_comp_methods == NULL) { CRYPTO_r_unlock(CRYPTO_LOCK_SSL); CRYPTO_w_lock(CRYPTO_LOCK_SSL); got_write_lock = 1; if (ssl_comp_methods == NULL) { SSL_COMP *comp = NULL; MemCheck_off(); ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp); if (ssl_comp_methods != NULL) { comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); if (comp != NULL) { comp->method=COMP_zlib(); if (comp->method && comp->method->type == NID_undef) OPENSSL_free(comp); else { comp->id=SSL_COMP_ZLIB_IDX; comp->name=comp->method->name; sk_SSL_COMP_push(ssl_comp_methods,comp); } } sk_SSL_COMP_sort(ssl_comp_methods); } MemCheck_on(); } } if (got_write_lock) CRYPTO_w_unlock(CRYPTO_LOCK_SSL); else CRYPTO_r_unlock(CRYPTO_LOCK_SSL); } #endif int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size,SSL_COMP **comp) { int i; const SSL_CIPHER *c; c=s->cipher; if (c == NULL) return(0); if (comp != NULL) { SSL_COMP ctmp; #ifndef OPENSSL_NO_COMP load_builtin_compressions(); #endif *comp=NULL; ctmp.id=s->compress_meth; if (ssl_comp_methods != NULL) { i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp); if (i >= 0) *comp=sk_SSL_COMP_value(ssl_comp_methods,i); else *comp=NULL; } } if ((enc == NULL) || (md == NULL)) return(0); switch (c->algorithm_enc) { case SSL_DES: i=SSL_ENC_DES_IDX; break; case SSL_3DES: i=SSL_ENC_3DES_IDX; break; case SSL_RC4: i=SSL_ENC_RC4_IDX; break; case SSL_RC2: i=SSL_ENC_RC2_IDX; break; case SSL_IDEA: i=SSL_ENC_IDEA_IDX; break; case SSL_eNULL: i=SSL_ENC_NULL_IDX; break; case SSL_AES128: i=SSL_ENC_AES128_IDX; break; case SSL_AES256: i=SSL_ENC_AES256_IDX; break; case SSL_CAMELLIA128: i=SSL_ENC_CAMELLIA128_IDX; break; case SSL_CAMELLIA256: i=SSL_ENC_CAMELLIA256_IDX; break; case SSL_eGOST2814789CNT: i=SSL_ENC_GOST89_IDX; break; case SSL_SEED: i=SSL_ENC_SEED_IDX; break; case SSL_AES128GCM: i=SSL_ENC_AES128GCM_IDX; break; case SSL_AES256GCM: i=SSL_ENC_AES256GCM_IDX; break; default: i= -1; break; } if ((i < 0) || (i >= SSL_ENC_NUM_IDX)) *enc=NULL; else { if (i == SSL_ENC_NULL_IDX) *enc=EVP_enc_null(); else *enc=ssl_cipher_methods[i]; } switch (c->algorithm_mac) { case SSL_MD5: i=SSL_MD_MD5_IDX; break; case SSL_SHA1: i=SSL_MD_SHA1_IDX; break; case SSL_SHA256: i=SSL_MD_SHA256_IDX; break; case SSL_SHA384: i=SSL_MD_SHA384_IDX; break; case SSL_GOST94: i = SSL_MD_GOST94_IDX; break; case SSL_GOST89MAC: i = SSL_MD_GOST89MAC_IDX; break; default: i= -1; break; } if ((i < 0) || (i >= SSL_MD_NUM_IDX)) { *md=NULL; if (mac_pkey_type!=NULL) *mac_pkey_type = NID_undef; if (mac_secret_size!=NULL) *mac_secret_size = 0; if (c->algorithm_mac == SSL_AEAD) mac_pkey_type = NULL; } else { *md=ssl_digest_methods[i]; if (mac_pkey_type!=NULL) *mac_pkey_type = ssl_mac_pkey_id[i]; if (mac_secret_size!=NULL) *mac_secret_size = ssl_mac_secret_size[i]; } if ((*enc != NULL) && (*md != NULL || (EVP_CIPHER_flags(*enc)&EVP_CIPH_FLAG_AEAD_CIPHER)) && (!mac_pkey_type||*mac_pkey_type != NID_undef)) { const EVP_CIPHER *evp; if (s->ssl_version>>8 != TLS1_VERSION_MAJOR || s->ssl_version < TLS1_VERSION) return 1; #ifdef OPENSSL_FIPS if (FIPS_mode()) return 1; #endif if (c->algorithm_enc == SSL_RC4 && c->algorithm_mac == SSL_MD5 && (evp=EVP_get_cipherbyname("RC4-HMAC-MD5"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA256 && (evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA256 && (evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256"))) *enc = evp, *md = NULL; return(1); } else return(0); } int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md) { if (idx <0||idx>=SSL_MD_NUM_IDX) { return 0; } *mask = ssl_handshake_digest_flag[idx]; if (*mask) *md = ssl_digest_methods[idx]; else *md = NULL; return 1; } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) return; if (curr == *head) *head=curr->next; if (curr->prev != NULL) curr->prev->next=curr->next; if (curr->next != NULL) curr->next->prev=curr->prev; (*tail)->next=curr; curr->prev= *tail; curr->next=NULL; *tail=curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) return; if (curr == *tail) *tail=curr->prev; if (curr->next != NULL) curr->next->prev=curr->prev; if (curr->prev != NULL) curr->prev->next=curr->next; (*head)->prev=curr; curr->next= *head; curr->prev=NULL; *head=curr; } static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, unsigned long *enc, unsigned long *mac, unsigned long *ssl) { *mkey = 0; *auth = 0; *enc = 0; *mac = 0; *ssl = 0; #ifdef OPENSSL_NO_RSA *mkey |= SSL_kRSA; *auth |= SSL_aRSA; #endif #ifdef OPENSSL_NO_DSA *auth |= SSL_aDSS; #endif #ifdef OPENSSL_NO_DH *mkey |= SSL_kDHr|SSL_kDHd|SSL_kEDH; *auth |= SSL_aDH; #endif #ifdef OPENSSL_NO_KRB5 *mkey |= SSL_kKRB5; *auth |= SSL_aKRB5; #endif #ifdef OPENSSL_NO_ECDSA *auth |= SSL_aECDSA; #endif #ifdef OPENSSL_NO_ECDH *mkey |= SSL_kECDHe|SSL_kECDHr; *auth |= SSL_aECDH; #endif #ifdef OPENSSL_NO_PSK *mkey |= SSL_kPSK; *auth |= SSL_aPSK; #endif #ifdef OPENSSL_NO_SRP *mkey |= SSL_kSRP; #endif /* Check for presence of GOST 34.10 algorithms, and if they * do not present, disable appropriate auth and key exchange */ if (!get_optional_pkey_id("gost94")) { *auth |= SSL_aGOST94; } if (!get_optional_pkey_id("gost2001")) { *auth |= SSL_aGOST01; } /* Disable GOST key exchange if no GOST signature algs are available * */ if ((*auth & (SSL_aGOST94|SSL_aGOST01)) == (SSL_aGOST94|SSL_aGOST01)) { *mkey |= SSL_kGOST; } #ifdef SSL_FORBID_ENULL *enc |= SSL_eNULL; #endif *enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0; *enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0; *enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0; *enc |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0; *enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0; *enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128:0; *enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256:0; *enc |= (ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] == NULL) ? SSL_AES128GCM:0; *enc |= (ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] == NULL) ? SSL_AES256GCM:0; *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA128:0; *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA256:0; *enc |= (ssl_cipher_methods[SSL_ENC_GOST89_IDX] == NULL) ? SSL_eGOST2814789CNT:0; *enc |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0; *mac |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0; *mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0; *mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256:0; *mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384:0; *mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94:0; *mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL || ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]==NID_undef)? SSL_GOST89MAC:0; } static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, unsigned long disabled_mkey, unsigned long disabled_auth, unsigned long disabled_enc, unsigned long disabled_mac, unsigned long disabled_ssl, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; const SSL_CIPHER *c; /* * We have num_of_ciphers descriptions compiled in, depending on the * method selected (SSLv2 and/or SSLv3, TLSv1 etc). * These will later be sorted in a linked list with at most num * entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if ((c != NULL) && c->valid && #ifdef OPENSSL_FIPS (!FIPS_mode() || (c->algo_strength & SSL_FIPS)) && #endif !(c->algorithm_mkey & disabled_mkey) && !(c->algorithm_auth & disabled_auth) && !(c->algorithm_enc & disabled_enc) && !(c->algorithm_mac & disabled_mac) && !(c->algorithm_ssl & disabled_ssl)) { co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list_num++; #ifdef KSSL_DEBUG printf("\t%d: %s %lx %lx %lx\n",i,c->name,c->id,c->algorithm_mkey,c->algorithm_auth); #endif /* KSSL_DEBUG */ /* if (!sk_push(ca_list,(char *)c)) goto err; */ } } /* * Prepare linked list from list entries */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, unsigned long disabled_mkey, unsigned long disabled_auth, unsigned long disabled_enc, unsigned long disabled_mac, unsigned long disabled_ssl, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; const SSL_CIPHER **ca_curr; int i; unsigned long mask_mkey = ~disabled_mkey; unsigned long mask_auth = ~disabled_auth; unsigned long mask_enc = ~disabled_enc; unsigned long mask_mac = ~disabled_mac; unsigned long mask_ssl = ~disabled_ssl; /* * First, add the real ciphers as already collected */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* * Now we add the available ones from the cipher_aliases[] table. * They represent either one or more algorithms, some of which * in any affected category must be supported (set in enabled_mask), * or represent a cipher strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey; unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth; unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc; unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac; unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl; if (algorithm_mkey) if ((algorithm_mkey & mask_mkey) == 0) continue; if (algorithm_auth) if ((algorithm_auth & mask_auth) == 0) continue; if (algorithm_enc) if ((algorithm_enc & mask_enc) == 0) continue; if (algorithm_mac) if ((algorithm_mac & mask_mac) == 0) continue; if (algorithm_ssl) if ((algorithm_ssl & mask_ssl) == 0) continue; *ca_curr = (SSL_CIPHER *)(cipher_aliases + i); ca_curr++; } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey, unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac, unsigned long alg_ssl, unsigned long algo_strength, int rule, int strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; #ifdef CIPHER_DEBUG printf("Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n", rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, strength_bits); #endif if (rule == CIPHER_DEL) reverse = 1; /* needed to maintain sorting between currently deleted ciphers */ head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) break; curr = next; if (curr == NULL) break; next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* * Selection criteria is either the value of strength_bits * or the algorithms used. */ if (strength_bits >= 0) { if (strength_bits != cp->strength_bits) continue; } else { #ifdef CIPHER_DEBUG printf("\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n", cp->name, cp->algorithm_mkey, cp->algorithm_auth, cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl, cp->algo_strength); #endif #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL if (cipher_id && cipher_id != cp->id) continue; #endif if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) continue; if (alg_auth && !(alg_auth & cp->algorithm_auth)) continue; if (alg_enc && !(alg_enc & cp->algorithm_enc)) continue; if (alg_mac && !(alg_mac & cp->algorithm_mac)) continue; if (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) continue; if ((algo_strength & SSL_EXP_MASK) && !(algo_strength & SSL_EXP_MASK & cp->algo_strength)) continue; if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) continue; } #ifdef CIPHER_DEBUG printf("Action = %d\n", rule); #endif /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* most recently deleted ciphersuites get best positions * for any future CIPHER_ADD (note that the CIPHER_DEL loop * works in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; } } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) head = curr->next; else curr->prev->next = curr->next; if (tail == curr) tail = curr->prev; curr->active = 0; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int max_strength_bits, i, *number_uses; CIPHER_ORDER *curr; /* * This routine sorts the ciphers with descending strength. The sorting * must keep the pre-sorted sequence, so we apply the normal sorting * routine as '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) max_strength_bits = curr->cipher->strength_bits; curr = curr->next; } number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); if (!number_uses) { SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE); return(0); } memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); /* * Now find the strength_bits values actually used */ curr = *head_p; while (curr != NULL) { if (curr->active) number_uses[curr->cipher->strength_bits]++; curr = curr->next; } /* * Go through the list of used strength_bits values in descending * order. */ for (i = max_strength_bits; i >= 0; i--) if (number_uses[i] > 0) ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p); OPENSSL_free(number_uses); return(1); } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list) { unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength; const char *l, *buf; int j, multi, found, rule, retval, ok, buflen; unsigned long cipher_id = 0; char ch; retval = 1; l = rule_str; for (;;) { ch = *l; if (ch == '\0') break; /* done */ if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else { rule = CIPHER_ADD; } if (ITEM_SEP(ch)) { l++; continue; } alg_mkey = 0; alg_auth = 0; alg_enc = 0; alg_mac = 0; alg_ssl = 0; algo_strength = 0; for (;;) { ch = *l; buf = l; buflen = 0; #ifndef CHARSET_EBCDIC while ( ((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) #else while ( isalnum(ch) || (ch == '-') || (ch == '.')) #endif { ch = *(++l); buflen++; } if (buflen == 0) { /* * We hit something we cannot deal with, * it is no command or separator nor * alphanumeric, so we call this an error. */ SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); retval = found = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi=1; l++; } else multi=0; /* * Now search for the cipher alias in the ca_list. Be careful * with the strncmp, because the "buflen" limitation * will make the rule "ADH:SOME" and the cipher * "ADH-MY-CIPHER" look like a match for buflen=3. * So additionally check whether the cipher name found * has the correct length. We can save a strlen() call: * just checking for the '\0' at the right place is * sufficient, we have to strncmp() anyway. (We cannot * use strcmp(), because buf is not '\0' terminated.) */ j = found = 0; cipher_id = 0; while (ca_list[j]) { if (!strncmp(buf, ca_list[j]->name, buflen) && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else j++; } if (!found) break; /* ignore this entry */ if (ca_list[j]->algorithm_mkey) { if (alg_mkey) { alg_mkey &= ca_list[j]->algorithm_mkey; if (!alg_mkey) { found = 0; break; } } else alg_mkey = ca_list[j]->algorithm_mkey; } if (ca_list[j]->algorithm_auth) { if (alg_auth) { alg_auth &= ca_list[j]->algorithm_auth; if (!alg_auth) { found = 0; break; } } else alg_auth = ca_list[j]->algorithm_auth; } if (ca_list[j]->algorithm_enc) { if (alg_enc) { alg_enc &= ca_list[j]->algorithm_enc; if (!alg_enc) { found = 0; break; } } else alg_enc = ca_list[j]->algorithm_enc; } if (ca_list[j]->algorithm_mac) { if (alg_mac) { alg_mac &= ca_list[j]->algorithm_mac; if (!alg_mac) { found = 0; break; } } else alg_mac = ca_list[j]->algorithm_mac; } if (ca_list[j]->algo_strength & SSL_EXP_MASK) { if (algo_strength & SSL_EXP_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_EXP_MASK) | ~SSL_EXP_MASK; if (!(algo_strength & SSL_EXP_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK; } if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { if (algo_strength & SSL_STRONG_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK; if (!(algo_strength & SSL_STRONG_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_STRONG_MASK; } if (ca_list[j]->valid) { /* explicit ciphersuite found; its protocol version * does not become part of the search pattern!*/ cipher_id = ca_list[j]->id; } else { /* not an explicit ciphersuite; only in this case, the * protocol version is considered part of the search pattern */ if (ca_list[j]->algorithm_ssl) { if (alg_ssl) { alg_ssl &= ca_list[j]->algorithm_ssl; if (!alg_ssl) { found = 0; break; } } else alg_ssl = ca_list[j]->algorithm_ssl; } } if (!multi) break; } /* * Ok, we have the rule, now apply it */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8)) ok = ssl_cipher_strength_sort(head_p, tail_p); else SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR, SSL_R_INVALID_COMMAND); if (ok == 0) retval = 0; /* * We do not support any "multi" options * together with "@", so throw away the * rest of the command, if any left, until * end or ':' is found. */ while ((*l != '\0') && !ITEM_SEP(*l)) l++; } else if (found) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, rule, -1, head_p, tail_p); } else { while ((*l != '\0') && !ITEM_SEP(*l)) l++; } if (*l == '\0') break; /* done */ } return(retval); } #ifndef OPENSSL_NO_EC static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c, const char **prule_str) { unsigned int suiteb_flags = 0, suiteb_comb2 = 0; if (!strcmp(*prule_str, "SUITEB128")) suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; else if (!strcmp(*prule_str, "SUITEB128ONLY")) suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY; else if (!strcmp(*prule_str, "SUITEB128C2")) { suiteb_comb2 = 1; suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS; } else if (!strcmp(*prule_str, "SUITEB192")) suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS; if (suiteb_flags) { c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS; c->cert_flags |= suiteb_flags; } else suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS; if (!suiteb_flags) return 1; /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */ if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) { if (meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ONLY_DTLS_1_2_ALLOWED_IN_SUITEB_MODE); else SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_ONLY_TLS_1_2_ALLOWED_IN_SUITEB_MODE); return 0; } #ifndef OPENSSL_NO_ECDH switch(suiteb_flags) { case SSL_CERT_FLAG_SUITEB_128_LOS: if (suiteb_comb2) *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; else *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384"; break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256"; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384"; break; } /* Set auto ECDH parameter determination */ c->ecdh_tmp_auto = 1; return 1; #else SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST, SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS); return 0; #endif } #endif STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER) **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str, CERT *c) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl; STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; const SSL_CIPHER **ca_list = NULL; /* * Return with error if nothing to do. */ if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL) return NULL; #ifndef OPENSSL_NO_EC if (!check_suiteb_cipher_list(ssl_method, c, &rule_str)) return NULL; #endif /* * To reduce the work to do we only want to process the compiled * in algorithms, so we first get the mask of disabled ciphers. */ ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl); /* * Now we have to collect the available ciphers from the compiled * in ciphers. We cannot get more than the number compiled in, so * it is used for allocation. */ num_of_ciphers = ssl_method->num_ciphers(); #ifdef KSSL_DEBUG printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers); #endif /* KSSL_DEBUG */ co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); if (co_list == NULL) { SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, co_list, &head, &tail); /* Now arrange all ciphers by preference: */ /* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */ ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* AES is our preferred symmetric cipher */ ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail); /* Low priority for MD5 */ ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail); /* Move anonymous ciphers to the end. Usually, these will remain disabled. * (For applications that allow them, they aren't too bad, but we prefer * authenticated ciphers.) */ ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* Move ciphers without forward secrecy to the end */ ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); */ ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kPSK, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); ssl_cipher_apply_rule(0, SSL_kKRB5, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* RC4 is sort-of broken -- move the the end */ ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail); /* Now sort by symmetric encryption strength. The above ordering remains * in force within each class */ if (!ssl_cipher_strength_sort(&head, &tail)) { OPENSSL_free(co_list); return NULL; } /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail); /* * We also need cipher aliases for selecting based on the rule_str. * There might be two types of entries in the rule_str: 1) names * of ciphers themselves 2) aliases for groups of ciphers. * For 1) we need the available ciphers and for 2) the cipher * groups of cipher_aliases added together in one list (otherwise * we would be happy with just the cipher_aliases table). */ num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_free(co_list); SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, head); /* * If the rule_string begins with DEFAULT, apply the default rule * before using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str,"DEFAULT",7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, ca_list); rule_p += 7; if (*rule_p == ':') rule_p++; } if (ok && (strlen(rule_p) > 0)) ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list); OPENSSL_free((void *)ca_list); /* Not needed anymore */ if (!ok) { /* Rule processing failure */ OPENSSL_free(co_list); return(NULL); } /* * Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) { OPENSSL_free(co_list); return(NULL); } /* * The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { #ifdef OPENSSL_FIPS if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) #else if (curr->active) #endif { sk_SSL_CIPHER_push(cipherstack, curr->cipher); #ifdef CIPHER_DEBUG printf("<%s>\n",curr->cipher->name); #endif } } OPENSSL_free(co_list); /* Not needed any longer */ tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) { sk_SSL_CIPHER_free(cipherstack); return NULL; } if (*cipher_list != NULL) sk_SSL_CIPHER_free(*cipher_list); *cipher_list = cipherstack; if (*cipher_list_by_id != NULL) sk_SSL_CIPHER_free(*cipher_list_by_id); *cipher_list_by_id = tmp_cipher_list; (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*cipher_list_by_id); return(cipherstack); } char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { int is_export,pkl,kl; const char *ver,*exp_str; const char *kx,*au,*enc,*mac; unsigned long alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl,alg2; #ifdef KSSL_DEBUG static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx/%lx/%lx/%lx/%lx\n"; #else static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n"; #endif /* KSSL_DEBUG */ alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; alg_ssl = cipher->algorithm_ssl; alg2=cipher->algorithm2; is_export=SSL_C_IS_EXPORT(cipher); pkl=SSL_C_EXPORT_PKEYLENGTH(cipher); kl=SSL_C_EXPORT_KEYLENGTH(cipher); exp_str=is_export?" export":""; if (alg_ssl & SSL_SSLV2) ver="SSLv2"; else if (alg_ssl & SSL_SSLV3) ver="SSLv3"; else if (alg_ssl & SSL_TLSV1_2) ver="TLSv1.2"; else ver="unknown"; switch (alg_mkey) { case SSL_kRSA: kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA"; break; case SSL_kDHr: kx="DH/RSA"; break; case SSL_kDHd: kx="DH/DSS"; break; case SSL_kKRB5: kx="KRB5"; break; case SSL_kEDH: kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH"; break; case SSL_kECDHr: kx="ECDH/RSA"; break; case SSL_kECDHe: kx="ECDH/ECDSA"; break; case SSL_kEECDH: kx="ECDH"; break; case SSL_kPSK: kx="PSK"; break; case SSL_kSRP: kx="SRP"; break; case SSL_kGOST: kx="GOST"; break; default: kx="unknown"; } switch (alg_auth) { case SSL_aRSA: au="RSA"; break; case SSL_aDSS: au="DSS"; break; case SSL_aDH: au="DH"; break; case SSL_aKRB5: au="KRB5"; break; case SSL_aECDH: au="ECDH"; break; case SSL_aNULL: au="None"; break; case SSL_aECDSA: au="ECDSA"; break; case SSL_aPSK: au="PSK"; break; case SSL_aSRP: au="SRP"; break; case SSL_aGOST94: au="GOST94"; break; case SSL_aGOST01: au="GOST01"; break; default: au="unknown"; break; } switch (alg_enc) { case SSL_DES: enc=(is_export && kl == 5)?"DES(40)":"DES(56)"; break; case SSL_3DES: enc="3DES(168)"; break; case SSL_RC4: enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)") :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)"); break; case SSL_RC2: enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)"; break; case SSL_IDEA: enc="IDEA(128)"; break; case SSL_eNULL: enc="None"; break; case SSL_AES128: enc="AES(128)"; break; case SSL_AES256: enc="AES(256)"; break; case SSL_AES128GCM: enc="AESGCM(128)"; break; case SSL_AES256GCM: enc="AESGCM(256)"; break; case SSL_CAMELLIA128: enc="Camellia(128)"; break; case SSL_CAMELLIA256: enc="Camellia(256)"; break; case SSL_SEED: enc="SEED(128)"; break; case SSL_eGOST2814789CNT: enc="GOST89(256)"; break; default: enc="unknown"; break; } switch (alg_mac) { case SSL_MD5: mac="MD5"; break; case SSL_SHA1: mac="SHA1"; break; case SSL_SHA256: mac="SHA256"; break; case SSL_SHA384: mac="SHA384"; break; case SSL_AEAD: mac="AEAD"; break; case SSL_GOST89MAC: mac="GOST89"; break; case SSL_GOST94: mac="GOST94"; break; default: mac="unknown"; break; } if (buf == NULL) { len=128; buf=OPENSSL_malloc(len); if (buf == NULL) return("OPENSSL_malloc Error"); } else if (len < 128) return("Buffer too small"); #ifdef KSSL_DEBUG BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl); #else BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str); #endif /* KSSL_DEBUG */ return(buf); } char *SSL_CIPHER_get_version(const SSL_CIPHER *c) { int i; if (c == NULL) return("(NONE)"); i=(int)(c->id>>24L); if (i == 3) return("TLSv1/SSLv3"); else if (i == 2) return("SSLv2"); else return("unknown"); } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) { if (c != NULL) return(c->name); return("(NONE)"); } /* number of bits for symmetric cipher */ int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) { int ret=0; if (c != NULL) { if (alg_bits != NULL) *alg_bits = c->alg_bits; ret = c->strength_bits; } return(ret); } unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c) { return c->id; } SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n) { SSL_COMP *ctmp; int i,nn; if ((n == 0) || (sk == NULL)) return(NULL); nn=sk_SSL_COMP_num(sk); for (i=0; iid == n) return(ctmp); } return(NULL); } #ifdef OPENSSL_NO_COMP void *SSL_COMP_get_compression_methods(void) { return NULL; } int SSL_COMP_add_compression_method(int id, void *cm) { return 1; } const char *SSL_COMP_get_name(const void *comp) { return NULL; } #else STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { load_builtin_compressions(); return(ssl_comp_methods); } STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP) *meths) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = meths; return old_meths; } static void cmeth_free(SSL_COMP *cm) { OPENSSL_free(cm); } void SSL_COMP_free_compression_methods(void) { STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods; ssl_comp_methods = NULL; sk_SSL_COMP_pop_free(old_meths, cmeth_free); } int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { SSL_COMP *comp; if (cm == NULL || cm->type == NID_undef) return 1; /* According to draft-ietf-tls-compression-04.txt, the compression number ranges should be the following: 0 to 63: methods defined by the IETF 64 to 192: external party methods assigned by IANA 193 to 255: reserved for private use */ if (id < 193 || id > 255) { SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE); return 0; } MemCheck_off(); comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)); comp->id=id; comp->method=cm; load_builtin_compressions(); if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0) { OPENSSL_free(comp); MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID); return(1); } else if ((ssl_comp_methods == NULL) || !sk_SSL_COMP_push(ssl_comp_methods,comp)) { OPENSSL_free(comp); MemCheck_on(); SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE); return(1); } else { MemCheck_on(); return(0); } } const char *SSL_COMP_get_name(const COMP_METHOD *comp) { if (comp) return comp->name; return NULL; } #endif /* For a cipher return the index corresponding to the certificate type */ int ssl_cipher_get_cert_index(const SSL_CIPHER *c) { unsigned long alg_k, alg_a; alg_k = c->algorithm_mkey; alg_a = c->algorithm_auth; if (alg_k & (SSL_kECDHr|SSL_kECDHe)) { /* we don't need to look at SSL_kEECDH * since no certificate is needed for * anon ECDH and for authenticated * EECDH, the check for the auth * algorithm will set i correctly * NOTE: For ECDH-RSA, we need an ECC * not an RSA cert but for EECDH-RSA * we need an RSA cert. Placing the * checks for SSL_kECDH before RSA * checks ensures the correct cert is chosen. */ return SSL_PKEY_ECC; } else if (alg_a & SSL_aECDSA) return SSL_PKEY_ECC; else if (alg_k & SSL_kDHr) return SSL_PKEY_DH_RSA; else if (alg_k & SSL_kDHd) return SSL_PKEY_DH_DSA; else if (alg_a & SSL_aDSS) return SSL_PKEY_DSA_SIGN; else if (alg_a & SSL_aRSA) return SSL_PKEY_RSA_ENC; else if (alg_a & SSL_aKRB5) /* VRS something else here? */ return -1; else if (alg_a & SSL_aGOST94) return SSL_PKEY_GOST94; else if (alg_a & SSL_aGOST01) return SSL_PKEY_GOST01; return -1; } const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr) { const SSL_CIPHER *c; c = ssl->method->get_cipher_by_char(ptr); if (c == NULL || c->valid == 0) return NULL; return c; } const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr) { return ssl->method->get_cipher_by_char(ptr); }