/** * @file decaf/point_448.h * @author Mike Hamburg * * @copyright * Copyright (c) 2015-2016 Cryptography Research, Inc. \n * Released under the MIT License. See LICENSE.txt for license information. * * @brief A group of prime order p, based on Ed448-Goldilocks. * * @warning This file was automatically generated in Python. * Please do not edit it. */ #ifndef __DECAF_POINT_448_H__ #define __DECAF_POINT_448_H__ 1 #include #ifdef __cplusplus extern "C" { #endif /** @cond internal */ #define DECAF_448_SCALAR_LIMBS ((446-1)/DECAF_WORD_BITS+1) /** @endcond */ /** The number of bits in a scalar */ #define DECAF_448_SCALAR_BITS 446 /** @cond internal */ #ifndef __DECAF_448_GF_DEFINED__ #define __DECAF_448_GF_DEFINED__ 1 /** @brief Galois field element internal structure */ typedef struct gf_448_s { decaf_word_t limb[512/DECAF_WORD_BITS]; } __attribute__((aligned(32))) gf_448_s, gf_448_t[1]; #endif /* __DECAF_448_GF_DEFINED__ */ /** @endcond */ /** Number of bytes in a serialized point. */ #define DECAF_448_SER_BYTES 56 /** Number of bytes in an elligated point. For now set the same as SER_BYTES * but could be different for other curves. */ #define DECAF_448_HASH_BYTES 56 /** Number of bytes in a serialized scalar. */ #define DECAF_448_SCALAR_BYTES 56 /** Number of bits in the "which" field of an elligator inverse */ #define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3 /** The cofactor the curve would have, if we hadn't removed it */ #define DECAF_448_REMOVED_COFACTOR 4 /** X448 encoding ratio. */ #define DECAF_X448_ENCODE_RATIO 2 /** Number of bytes in an x448 public key */ #define DECAF_X448_PUBLIC_BYTES 56 /** Number of bytes in an x448 private key */ #define DECAF_X448_PRIVATE_BYTES 56 /** Twisted Edwards extended homogeneous coordinates */ typedef struct decaf_448_point_s { /** @cond internal */ gf_448_t x,y,z,t; /** @endcond */ } decaf_448_point_t[1]; /** Precomputed table based on a point. Can be trivial implementation. */ struct decaf_448_precomputed_s; /** Precomputed table based on a point. Can be trivial implementation. */ typedef struct decaf_448_precomputed_s decaf_448_precomputed_s; /** Size and alignment of precomputed point tables. */ extern const size_t decaf_448_sizeof_precomputed_s DECAF_API_VIS, decaf_448_alignof_precomputed_s DECAF_API_VIS; /** Scalar is stored packed, because we don't need the speed. */ typedef struct decaf_448_scalar_s { /** @cond internal */ decaf_word_t limb[DECAF_448_SCALAR_LIMBS]; /** @endcond */ } decaf_448_scalar_t[1]; /** A scalar equal to 1. */ extern const decaf_448_scalar_t decaf_448_scalar_one DECAF_API_VIS; /** A scalar equal to 0. */ extern const decaf_448_scalar_t decaf_448_scalar_zero DECAF_API_VIS; /** The identity point on the curve. */ extern const decaf_448_point_t decaf_448_point_identity DECAF_API_VIS; /** An arbitrarily chosen base point on the curve. */ extern const decaf_448_point_t decaf_448_point_base DECAF_API_VIS; /** Precomputed table for the base point on the curve. */ extern const struct decaf_448_precomputed_s *decaf_448_precomputed_base DECAF_API_VIS; /** * @brief Read a scalar from wire format or from bytes. * * @param [in] ser Serialized form of a scalar. * @param [out] out Deserialized form. * * @retval DECAF_SUCCESS The scalar was correctly encoded. * @retval DECAF_FAILURE The scalar was greater than the modulus, * and has been reduced modulo that modulus. */ decaf_error_t decaf_448_scalar_decode ( decaf_448_scalar_t out, const unsigned char ser[DECAF_448_SCALAR_BYTES] ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Read a scalar from wire format or from bytes. Reduces mod * scalar prime. * * @param [in] ser Serialized form of a scalar. * @param [in] ser_len Length of serialized form. * @param [out] out Deserialized form. */ void decaf_448_scalar_decode_long ( decaf_448_scalar_t out, const unsigned char *ser, size_t ser_len ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Serialize a scalar to wire format. * * @param [out] ser Serialized form of a scalar. * @param [in] s Deserialized scalar. */ void decaf_448_scalar_encode ( unsigned char ser[DECAF_448_SCALAR_BYTES], const decaf_448_scalar_t s ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_NOINLINE; /** * @brief Add two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a+b. */ void decaf_448_scalar_add ( decaf_448_scalar_t out, const decaf_448_scalar_t a, const decaf_448_scalar_t b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Compare two scalars. * @param [in] a One scalar. * @param [in] b Another scalar. * @retval DECAF_TRUE The scalars are equal. * @retval DECAF_FALSE The scalars are not equal. */ decaf_bool_t decaf_448_scalar_eq ( const decaf_448_scalar_t a, const decaf_448_scalar_t b ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Subtract two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a-b. */ void decaf_448_scalar_sub ( decaf_448_scalar_t out, const decaf_448_scalar_t a, const decaf_448_scalar_t b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Multiply two scalars. The scalars may use the same memory. * @param [in] a One scalar. * @param [in] b Another scalar. * @param [out] out a*b. */ void decaf_448_scalar_mul ( decaf_448_scalar_t out, const decaf_448_scalar_t a, const decaf_448_scalar_t b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Halve a scalar. The scalars may use the same memory. * @param [in] a A scalar. * @param [out] out a/2. */ void decaf_448_scalar_halve ( decaf_448_scalar_t out, const decaf_448_scalar_t a ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Invert a scalar. When passed zero, return 0. The input and output may alias. * @param [in] a A scalar. * @param [out] out 1/a. * @return DECAF_SUCCESS The input is nonzero. */ decaf_error_t decaf_448_scalar_invert ( decaf_448_scalar_t out, const decaf_448_scalar_t a ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Copy a scalar. The scalars may use the same memory, in which * case this function does nothing. * @param [in] a A scalar. * @param [out] out Will become a copy of a. */ static inline void DECAF_NONNULL decaf_448_scalar_copy ( decaf_448_scalar_t out, const decaf_448_scalar_t a ) { *out = *a; } /** * @brief Set a scalar to an unsigned 64-bit integer. * @param [in] a An integer. * @param [out] out Will become equal to a. */ void decaf_448_scalar_set_unsigned ( decaf_448_scalar_t out, uint64_t a ) DECAF_API_VIS DECAF_NONNULL; /** * @brief Encode a point as a sequence of bytes. * * @param [out] ser The byte representation of the point. * @param [in] pt The point to encode. */ void decaf_448_point_encode ( uint8_t ser[DECAF_448_SER_BYTES], const decaf_448_point_t pt ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Decode a point from a sequence of bytes. * * Every point has a unique encoding, so not every * sequence of bytes is a valid encoding. If an invalid * encoding is given, the output is undefined. * * @param [out] pt The decoded point. * @param [in] ser The serialized version of the point. * @param [in] allow_identity DECAF_TRUE if the identity is a legal input. * @retval DECAF_SUCCESS The decoding succeeded. * @retval DECAF_FAILURE The decoding didn't succeed, because * ser does not represent a point. */ decaf_error_t decaf_448_point_decode ( decaf_448_point_t pt, const uint8_t ser[DECAF_448_SER_BYTES], decaf_bool_t allow_identity ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Copy a point. The input and output may alias, * in which case this function does nothing. * * @param [out] a A copy of the point. * @param [in] b Any point. */ static inline void DECAF_NONNULL decaf_448_point_copy ( decaf_448_point_t a, const decaf_448_point_t b ) { *a=*b; } /** * @brief Test whether two points are equal. If yes, return * DECAF_TRUE, else return DECAF_FALSE. * * @param [in] a A point. * @param [in] b Another point. * @retval DECAF_TRUE The points are equal. * @retval DECAF_FALSE The points are not equal. */ decaf_bool_t decaf_448_point_eq ( const decaf_448_point_t a, const decaf_448_point_t b ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Add two points to produce a third point. The * input points and output point can be pointers to the same * memory. * * @param [out] sum The sum a+b. * @param [in] a An addend. * @param [in] b An addend. */ void decaf_448_point_add ( decaf_448_point_t sum, const decaf_448_point_t a, const decaf_448_point_t b ) DECAF_API_VIS DECAF_NONNULL; /** * @brief Double a point. Equivalent to * decaf_448_point_add(two_a,a,a), but potentially faster. * * @param [out] two_a The sum a+a. * @param [in] a A point. */ void decaf_448_point_double ( decaf_448_point_t two_a, const decaf_448_point_t a ) DECAF_API_VIS DECAF_NONNULL; /** * @brief Subtract two points to produce a third point. The * input points and output point can be pointers to the same * memory. * * @param [out] diff The difference a-b. * @param [in] a The minuend. * @param [in] b The subtrahend. */ void decaf_448_point_sub ( decaf_448_point_t diff, const decaf_448_point_t a, const decaf_448_point_t b ) DECAF_API_VIS DECAF_NONNULL; /** * @brief Negate a point to produce another point. The input * and output points can use the same memory. * * @param [out] nega The negated input point * @param [in] a The input point. */ void decaf_448_point_negate ( decaf_448_point_t nega, const decaf_448_point_t a ) DECAF_API_VIS DECAF_NONNULL; /** * @brief Multiply a base point by a scalar: scaled = scalar*base. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. */ void decaf_448_point_scalarmul ( decaf_448_point_t scaled, const decaf_448_point_t base, const decaf_448_scalar_t scalar ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Multiply a base point by a scalar: scaled = scalar*base. * This function operates directly on serialized forms. * * @warning This function is experimental. It may not be supported * long-term. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. * @param [in] allow_identity Allow the input to be the identity. * @param [in] short_circuit Allow a fast return if the input is illegal. * * @retval DECAF_SUCCESS The scalarmul succeeded. * @retval DECAF_FAILURE The scalarmul didn't succeed, because * base does not represent a point. */ decaf_error_t decaf_448_direct_scalarmul ( uint8_t scaled[DECAF_448_SER_BYTES], const uint8_t base[DECAF_448_SER_BYTES], const decaf_448_scalar_t scalar, decaf_bool_t allow_identity, decaf_bool_t short_circuit ) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; /** * @brief RFC 7748 Diffie-Hellman scalarmul. This function uses a different * (non-Decaf) encoding. * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. * * @retval DECAF_SUCCESS The scalarmul succeeded. * @retval DECAF_FAILURE The scalarmul didn't succeed, because the base * point is in a small subgroup. */ decaf_error_t decaf_x448 ( uint8_t out[DECAF_X448_PUBLIC_BYTES], const uint8_t base[DECAF_X448_PUBLIC_BYTES], const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE; /** * @brief Multiply a point by DECAF_X448_ENCODE_RATIO, * then encode it like RFC 7748. * * This function is mainly used internally, but is exported in case * it will be useful. * * The ratio is necessary because the internal representation doesn't * track the cofactor information, so on output we must clear the cofactor. * This would multiply by the cofactor, but in fact internally libdecaf's * points are always even, so it multiplies by half the cofactor instead. * * As it happens, this aligns with the base point definitions; that is, * if you pass the Decaf/Ristretto base point to this function, the result * will be DECAF_X448_ENCODE_RATIO times the X448 * base point. * * @param [out] out The scaled and encoded point. * @param [in] p The point to be scaled and encoded. */ void decaf_448_point_mul_by_ratio_and_encode_like_x448 ( uint8_t out[DECAF_X448_PUBLIC_BYTES], const decaf_448_point_t p ) DECAF_API_VIS DECAF_NONNULL; /** The base point for X448 Diffie-Hellman */ extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS; /** * @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses * a different (non-Decaf) encoding. * * @deprecated Renamed to decaf_x448_derive_public_key. * I have no particular timeline for removing this name. * * @param [out] scaled The scaled point base*scalar * @param [in] scalar The scalar to multiply by. */ void decaf_x448_generate_key ( uint8_t out[DECAF_X448_PUBLIC_BYTES], const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_DEPRECATED("Renamed to decaf_x448_derive_public_key"); /** * @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses * a different (non-Decaf) encoding. * * Does exactly the same thing as decaf_x448_generate_key, * but has a better name. * * @param [out] scaled The scaled point base*scalar * @param [in] scalar The scalar to multiply by. */ void decaf_x448_derive_public_key ( uint8_t out[DECAF_X448_PUBLIC_BYTES], const uint8_t scalar[DECAF_X448_PRIVATE_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /* FUTURE: uint8_t decaf_448_encode_like_curve448) */ /** * @brief Precompute a table for fast scalar multiplication. * Some implementations do not include precomputed points; for * those implementations, this implementation simply copies the * point. * * @param [out] a A precomputed table of multiples of the point. * @param [in] b Any point. */ void decaf_448_precompute ( decaf_448_precomputed_s *a, const decaf_448_point_t b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Multiply a precomputed base point by a scalar: * scaled = scalar*base. * Some implementations do not include precomputed points; for * those implementations, this function is the same as * decaf_448_point_scalarmul * * @param [out] scaled The scaled point base*scalar * @param [in] base The point to be scaled. * @param [in] scalar The scalar to multiply by. */ void decaf_448_precomputed_scalarmul ( decaf_448_point_t scaled, const decaf_448_precomputed_s *base, const decaf_448_scalar_t scalar ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Multiply two base points by two scalars: * scaled = scalar1*base1 + scalar2*base2. * * Equivalent to two calls to decaf_448_point_scalarmul, but may be * faster. * * @param [out] combo The linear combination scalar1*base1 + scalar2*base2. * @param [in] base1 A first point to be scaled. * @param [in] scalar1 A first scalar to multiply by. * @param [in] base2 A second point to be scaled. * @param [in] scalar2 A second scalar to multiply by. */ void decaf_448_point_double_scalarmul ( decaf_448_point_t combo, const decaf_448_point_t base1, const decaf_448_scalar_t scalar1, const decaf_448_point_t base2, const decaf_448_scalar_t scalar2 ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * Multiply one base point by two scalars: * * a1 = scalar1 * base * a2 = scalar2 * base * * Equivalent to two calls to decaf_448_point_scalarmul, but may be * faster. * * @param [out] a1 The first multiple. It may be the same as the input point. * @param [out] a2 The second multiple. It may be the same as the input point. * @param [in] base1 A point to be scaled. * @param [in] scalar1 A first scalar to multiply by. * @param [in] scalar2 A second scalar to multiply by. */ void decaf_448_point_dual_scalarmul ( decaf_448_point_t a1, decaf_448_point_t a2, const decaf_448_point_t base1, const decaf_448_scalar_t scalar1, const decaf_448_scalar_t scalar2 ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Multiply two base points by two scalars: * scaled = scalar1*decaf_448_point_base + scalar2*base2. * * Otherwise equivalent to decaf_448_point_double_scalarmul, but may be * faster at the expense of being variable time. * * @param [out] combo The linear combination scalar1*base + scalar2*base2. * @param [in] scalar1 A first scalar to multiply by. * @param [in] base2 A second point to be scaled. * @param [in] scalar2 A second scalar to multiply by. * * @warning: This function takes variable time, and may leak the scalars * used. It is designed for signature verification. */ void decaf_448_base_double_scalarmul_non_secret ( decaf_448_point_t combo, const decaf_448_scalar_t scalar1, const decaf_448_point_t base2, const decaf_448_scalar_t scalar2 ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Constant-time decision between two points. If pick_b * is zero, out = a; else out = b. * * @param [out] out The output. It may be the same as either input. * @param [in] a Any point. * @param [in] b Any point. * @param [in] pick_b If nonzero, choose point b. */ void decaf_448_point_cond_sel ( decaf_448_point_t out, const decaf_448_point_t a, const decaf_448_point_t b, decaf_word_t pick_b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Constant-time decision between two scalars. If pick_b * is zero, out = a; else out = b. * * @param [out] out The output. It may be the same as either input. * @param [in] a Any scalar. * @param [in] b Any scalar. * @param [in] pick_b If nonzero, choose scalar b. */ void decaf_448_scalar_cond_sel ( decaf_448_scalar_t out, const decaf_448_scalar_t a, const decaf_448_scalar_t b, decaf_word_t pick_b ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Test that a point is valid, for debugging purposes. * * @param [in] to_test The point to test. * @retval DECAF_TRUE The point is valid. * @retval DECAF_FALSE The point is invalid. */ decaf_bool_t decaf_448_point_valid ( const decaf_448_point_t to_test ) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE; /** * @brief Torque a point, for debugging purposes. The output * will be equal to the input. * * @param [out] q The point to torque. * @param [in] p The point to torque. */ void decaf_448_point_debugging_torque ( decaf_448_point_t q, const decaf_448_point_t p ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Projectively scale a point, for debugging purposes. * The output will be equal to the input, and will be valid * even if the factor is zero. * * @param [out] q The point to scale. * @param [in] p The point to scale. * @param [in] factor Serialized GF factor to scale. */ void decaf_448_point_debugging_pscale ( decaf_448_point_t q, const decaf_448_point_t p, const unsigned char factor[DECAF_448_SER_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Almost-Elligator-like hash to curve. * * Call this function with the output of a hash to make a hash to the curve. * * This function runs Elligator2 on the decaf_448 Jacobi quartic model. It then * uses the isogeny to put the result in twisted Edwards form. As a result, * it is safe (cannot produce points of order 4), and would be compatible with * hypothetical other implementations of Decaf using a Montgomery or untwisted * Edwards model. * * Unlike Elligator, this function may be up to 4:1 on [0,(p-1)/2]: * A factor of 2 due to the isogeny. * A factor of 2 because we quotient out the 2-torsion. * * This makes it about 8:1 overall, or 16:1 overall on curves with cofactor 8. * * Negating the input (mod q) results in the same point. Inverting the input * (mod q) results in the negative point. This is the same as Elligator. * * This function isn't quite indifferentiable from a random oracle. * However, it is suitable for many protocols, including SPEKE and SPAKE2 EE. * Furthermore, calling it twice with independent seeds and adding the results * is indifferentiable from a random oracle. * * @param [in] hashed_data Output of some hash function. * @param [out] pt The data hashed to the curve. */ void decaf_448_point_from_hash_nonuniform ( decaf_448_point_t pt, const unsigned char hashed_data[DECAF_448_HASH_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Indifferentiable hash function encoding to curve. * * Equivalent to calling decaf_448_point_from_hash_nonuniform twice and adding. * * @param [in] hashed_data Output of some hash function. * @param [out] pt The data hashed to the curve. */ void decaf_448_point_from_hash_uniform ( decaf_448_point_t pt, const unsigned char hashed_data[2*DECAF_448_HASH_BYTES] ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE; /** * @brief Inverse of elligator-like hash to curve. * * This function writes to the buffer, to make it so that * decaf_448_point_from_hash_nonuniform(buffer) = pt if * possible. Since there may be multiple preimages, the * "which" parameter chooses between them. To ensure uniform * inverse sampling, this function succeeds or fails * independently for different "which" values. * * This function isn't guaranteed to find every possible * preimage, but it finds all except a small finite number. * In particular, when the number of bits in the modulus isn't * a multiple of 8 (i.e. for curve25519), it sets the high bits * independently, which enables the generated data to be uniform. * But it doesn't add p, so you'll never get exactly p from this * function. This might change in the future, especially if * we ever support eg Brainpool curves, where this could cause * real nonuniformity. * * @param [out] recovered_hash Encoded data. * @param [in] pt The point to encode. * @param [in] which A value determining which inverse point * to return. * * @retval DECAF_SUCCESS The inverse succeeded. * @retval DECAF_FAILURE The inverse failed. */ decaf_error_t decaf_448_invert_elligator_nonuniform ( unsigned char recovered_hash[DECAF_448_HASH_BYTES], const decaf_448_point_t pt, uint32_t which ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED; /** * @brief Inverse of elligator-like hash to curve. * * This function writes to the buffer, to make it so that * decaf_448_point_from_hash_uniform(buffer) = pt if * possible. Since there may be multiple preimages, the * "which" parameter chooses between them. To ensure uniform * inverse sampling, this function succeeds or fails * independently for different "which" values. * * @param [out] recovered_hash Encoded data. * @param [in] pt The point to encode. * @param [in] which A value determining which inverse point * to return. * * @retval DECAF_SUCCESS The inverse succeeded. * @retval DECAF_FAILURE The inverse failed. */ decaf_error_t decaf_448_invert_elligator_uniform ( unsigned char recovered_hash[2*DECAF_448_HASH_BYTES], const decaf_448_point_t pt, uint32_t which ) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED; /** * @brief Overwrite scalar with zeros. */ void decaf_448_scalar_destroy ( decaf_448_scalar_t scalar ) DECAF_NONNULL DECAF_API_VIS; /** * @brief Overwrite point with zeros. */ void decaf_448_point_destroy ( decaf_448_point_t point ) DECAF_NONNULL DECAF_API_VIS; /** * @brief Overwrite precomputed table with zeros. */ void decaf_448_precomputed_destroy ( decaf_448_precomputed_s *pre ) DECAF_NONNULL DECAF_API_VIS; #ifdef __cplusplus } /* extern "C" */ #endif #endif /* __DECAF_POINT_448_H__ */