/* * Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "rand_lcl.h" #include "internal/thread_once.h" /* * Mapping of NIST SP 800-90A DRBG to OpenSSL RAND_METHOD. */ /* * The default global DRBG and its auto-init/auto-cleanup. */ static DRBG_CTX ossl_drbg; static CRYPTO_ONCE ossl_drbg_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_ossl_drbg_init) { ossl_drbg.lock = CRYPTO_THREAD_lock_new(); return ossl_drbg.lock != NULL; } void rand_drbg_cleanup(void) { CRYPTO_THREAD_lock_free(ossl_drbg.lock); } static void inc_128(DRBG_CTR_CTX *cctx) { int i; unsigned char c; unsigned char *p = &cctx->V[15]; for (i = 0; i < 16; i++, p--) { c = *p; c++; *p = c; if (c != 0) { /* If we didn't wrap around, we're done. */ break; } } } static void ctr_XOR(DRBG_CTR_CTX *cctx, const unsigned char *in, size_t inlen) { size_t i, n; if (in == NULL || inlen == 0) return; /* * Any zero padding will have no effect on the result as we * are XORing. So just process however much input we have. */ n = inlen < cctx->keylen ? inlen : cctx->keylen; for (i = 0; i < n; i++) cctx->K[i] ^= in[i]; if (inlen <= cctx->keylen) return; n = inlen - cctx->keylen; if (n > 16) { /* Should never happen */ n = 16; } for (i = 0; i < n; i++) cctx->V[i] ^= in[i + cctx->keylen]; } /* * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 */ static void ctr_BCC_block(DRBG_CTR_CTX *cctx, unsigned char *out, const unsigned char *in) { int i; for (i = 0; i < 16; i++) out[i] ^= in[i]; AES_encrypt(out, out, &cctx->df_ks); } /* * Handle several BCC operations for as much data as we need for K and X */ static void ctr_BCC_blocks(DRBG_CTR_CTX *cctx, const unsigned char *in) { ctr_BCC_block(cctx, cctx->KX, in); ctr_BCC_block(cctx, cctx->KX + 16, in); if (cctx->keylen != 16) ctr_BCC_block(cctx, cctx->KX + 32, in); } /* * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: * see 10.3.1 stage 7. */ static void ctr_BCC_init(DRBG_CTR_CTX *cctx) { memset(cctx->KX, 0, 48); memset(cctx->bltmp, 0, 16); ctr_BCC_block(cctx, cctx->KX, cctx->bltmp); cctx->bltmp[3] = 1; ctr_BCC_block(cctx, cctx->KX + 16, cctx->bltmp); if (cctx->keylen != 16) { cctx->bltmp[3] = 2; ctr_BCC_block(cctx, cctx->KX + 32, cctx->bltmp); } } /* * Process several blocks into BCC algorithm, some possibly partial */ static void ctr_BCC_update(DRBG_CTR_CTX *cctx, const unsigned char *in, size_t inlen) { if (in == NULL || inlen == 0) return; /* If we have partial block handle it first */ if (cctx->bltmp_pos) { size_t left = 16 - cctx->bltmp_pos; /* If we now have a complete block process it */ if (inlen >= left) { memcpy(cctx->bltmp + cctx->bltmp_pos, in, left); ctr_BCC_blocks(cctx, cctx->bltmp); cctx->bltmp_pos = 0; inlen -= left; in += left; } } /* Process zero or more complete blocks */ for (; inlen >= 16; in += 16, inlen -= 16) { ctr_BCC_blocks(cctx, in); } /* Copy any remaining partial block to the temporary buffer */ if (inlen > 0) { memcpy(cctx->bltmp + cctx->bltmp_pos, in, inlen); cctx->bltmp_pos += inlen; } } static void ctr_BCC_final(DRBG_CTR_CTX *cctx) { if (cctx->bltmp_pos) { memset(cctx->bltmp + cctx->bltmp_pos, 0, 16 - cctx->bltmp_pos); ctr_BCC_blocks(cctx, cctx->bltmp); } } static void ctr_df(DRBG_CTR_CTX *cctx, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *in3, size_t in3len) { static unsigned char c80 = 0x80; size_t inlen; unsigned char *p = cctx->bltmp; ctr_BCC_init(cctx); if (in1 == NULL) in1len = 0; if (in2 == NULL) in2len = 0; if (in3 == NULL) in3len = 0; inlen = in1len + in2len + in3len; /* Initialise L||N in temporary block */ *p++ = (inlen >> 24) & 0xff; *p++ = (inlen >> 16) & 0xff; *p++ = (inlen >> 8) & 0xff; *p++ = inlen & 0xff; /* NB keylen is at most 32 bytes */ *p++ = 0; *p++ = 0; *p++ = 0; *p = (unsigned char)((cctx->keylen + 16) & 0xff); cctx->bltmp_pos = 8; ctr_BCC_update(cctx, in1, in1len); ctr_BCC_update(cctx, in2, in2len); ctr_BCC_update(cctx, in3, in3len); ctr_BCC_update(cctx, &c80, 1); ctr_BCC_final(cctx); /* Set up key K */ AES_set_encrypt_key(cctx->KX, cctx->keylen * 8, &cctx->df_kxks); /* X follows key K */ AES_encrypt(cctx->KX + cctx->keylen, cctx->KX, &cctx->df_kxks); AES_encrypt(cctx->KX, cctx->KX + 16, &cctx->df_kxks); if (cctx->keylen != 16) AES_encrypt(cctx->KX + 16, cctx->KX + 32, &cctx->df_kxks); } /* * NB the no-df Update in SP800-90A specifies a constant input length * of seedlen, however other uses of this algorithm pad the input with * zeroes if necessary and have up to two parameters XORed together, * handle both cases in this function instead. */ static void ctr_update(DRBG_CTX *dctx, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *nonce, size_t noncelen) { DRBG_CTR_CTX *cctx = &dctx->ctr; /* ks is already setup for correct key */ inc_128(cctx); AES_encrypt(cctx->V, cctx->K, &cctx->ks); /* If keylen longer than 128 bits need extra encrypt */ if (cctx->keylen != 16) { inc_128(cctx); AES_encrypt(cctx->V, cctx->K + 16, &cctx->ks); } inc_128(cctx); AES_encrypt(cctx->V, cctx->V, &cctx->ks); /* If 192 bit key part of V is on end of K */ if (cctx->keylen == 24) { memcpy(cctx->V + 8, cctx->V, 8); memcpy(cctx->V, cctx->K + 24, 8); } if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { /* If no input reuse existing derived value */ if (in1 != NULL || nonce != NULL || in2 != NULL) ctr_df(cctx, in1, in1len, nonce, noncelen, in2, in2len); /* If this a reuse input in1len != 0 */ if (in1len) ctr_XOR(cctx, cctx->KX, dctx->seedlen); } else { ctr_XOR(cctx, in1, in1len); ctr_XOR(cctx, in2, in2len); } AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); } int ctr_instantiate(DRBG_CTX *dctx, const unsigned char *ent, size_t entlen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen) { DRBG_CTR_CTX *cctx = &dctx->ctr; memset(cctx->K, 0, sizeof(cctx->K)); memset(cctx->V, 0, sizeof(cctx->V)); AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); ctr_update(dctx, ent, entlen, pers, perslen, nonce, noncelen); return 1; } int ctr_reseed(DRBG_CTX *dctx, const unsigned char *ent, size_t entlen, const unsigned char *adin, size_t adinlen) { ctr_update(dctx, ent, entlen, adin, adinlen, NULL, 0); return 1; } int ctr_generate(DRBG_CTX *dctx, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen) { DRBG_CTR_CTX *cctx = &dctx->ctr; if (adin != NULL && adinlen != 0) { ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0); /* This means we reuse derived value */ if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { adin = NULL; adinlen = 1; } } else { adinlen = 0; } for ( ; ; ) { inc_128(cctx); if (outlen < 16) { /* Use K as temp space as it will be updated */ AES_encrypt(cctx->V, cctx->K, &cctx->ks); memcpy(out, cctx->K, outlen); break; } AES_encrypt(cctx->V, out, &cctx->ks); out += 16; outlen -= 16; if (outlen == 0) break; } ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0); return 1; } int ctr_uninstantiate(DRBG_CTX *dctx) { memset(&dctx->ctr, 0, sizeof(dctx->ctr)); return 1; } int ctr_init(DRBG_CTX *dctx) { DRBG_CTR_CTX *cctx = &dctx->ctr; size_t keylen; switch (dctx->nid) { default: /* This can't happen, but silence the compiler warning. */ return -1; case NID_aes_128_ctr: keylen = 16; break; case NID_aes_192_ctr: keylen = 24; break; case NID_aes_256_ctr: keylen = 32; break; } cctx->keylen = keylen; dctx->strength = keylen * 8; dctx->blocklength = 16; dctx->seedlen = keylen + 16; if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { /* df initialisation */ static unsigned char df_key[32] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f, 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17, 0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }; /* Set key schedule for df_key */ AES_set_encrypt_key(df_key, dctx->strength, &cctx->df_ks); dctx->min_entropy = cctx->keylen; dctx->max_entropy = DRBG_MAX_LENGTH; dctx->min_nonce = dctx->min_entropy / 2; dctx->max_nonce = DRBG_MAX_LENGTH; dctx->max_pers = DRBG_MAX_LENGTH; dctx->max_adin = DRBG_MAX_LENGTH; } else { dctx->min_entropy = dctx->seedlen; dctx->max_entropy = dctx->seedlen; /* Nonce not used */ dctx->min_nonce = 0; dctx->max_nonce = 0; dctx->max_pers = dctx->seedlen; dctx->max_adin = dctx->seedlen; } dctx->max_request = 1 << 16; dctx->reseed_interval = MAX_RESEED; return 1; } /* * The following function tie the DRBG code into the RAND_METHOD */ DRBG_CTX *RAND_DRBG_get_default(void) { if (!RUN_ONCE(&ossl_drbg_init, do_ossl_drbg_init)) return NULL; return &ossl_drbg; } static int drbg_bytes(unsigned char *out, int count) { DRBG_CTX *dctx = RAND_DRBG_get_default(); int ret = 0; CRYPTO_THREAD_write_lock(dctx->lock); do { size_t rcnt; if (count > (int)dctx->max_request) rcnt = dctx->max_request; else rcnt = count; ret = RAND_DRBG_generate(dctx, out, rcnt, 0, NULL, 0); if (!ret) goto err; out += rcnt; count -= rcnt; } while (count); ret = 1; err: CRYPTO_THREAD_unlock(dctx->lock); return ret; } static int drbg_status(void) { DRBG_CTX *dctx = RAND_DRBG_get_default(); int ret; CRYPTO_THREAD_write_lock(dctx->lock); ret = dctx->status == DRBG_STATUS_READY ? 1 : 0; CRYPTO_THREAD_unlock(dctx->lock); return ret; } static void drbg_cleanup(void) { DRBG_CTX *dctx = RAND_DRBG_get_default(); CRYPTO_THREAD_write_lock(dctx->lock); RAND_DRBG_uninstantiate(dctx); CRYPTO_THREAD_unlock(dctx->lock); } static const RAND_METHOD rand_drbg_meth = { NULL, drbg_bytes, drbg_cleanup, NULL, drbg_bytes, drbg_status }; const RAND_METHOD *RAND_drbg(void) { return &rand_drbg_meth; }