#!/usr/bin/env perl # Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for AVX2. # # July 2017. # # To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page # 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data # other than A[0][0] in magic order into 6 [256-bit] registers, *each # dedicated to one axis*, Pi permutation is reduced to intra-register # shuffles... # # It makes other steps more intricate, but overall, is it a win? To be # more specific index permutations organized by quadruples are: # # [4][4] [3][3] [2][2] [1][1]<-+ # [0][4] [0][3] [0][2] [0][1]<-+ # [3][0] [1][0] [4][0] [2][0] | # [4][3] [3][1] [2][4] [1][2] | # [3][4] [1][3] [4][2] [2][1] | # [2][3] [4][1] [1][4] [3][2] | # [2][2] [4][4] [1][1] [3][3] -+ # # This however is highly impractical for Theta and Chi. What would help # Theta is if x indices were aligned column-wise, or in other words: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010) # [2][4] [4][3] [1][2] [3][1] #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101) # [3][4] [1][3] [4][2] [2][1] #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010) # [1][4] [2][3] [3][2] [4][1] #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011) # [4][4] [3][3] [2][2] [1][1] # # So here we have it, lines not marked with vpermq() represent the magic # order in which data is to be loaded and maintained. [And lines marked # with vpermq() represent Pi circular permutation in chosen layout. Note # that first step is permutation-free.] A[0][0] is loaded to register of # its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.] # Digits in variables' names denote right-most coordinates: my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0 $A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1 $A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2 $A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3 $A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4 $A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5 $A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6 map("%ymm$_",(0..6)); # We also need to map the magic order into offsets within structure: my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4] [2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4] [2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4] [2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4] [2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4] @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear # But on the other hand Chi is much better off if y indices were aligned # column-wise, not x. For this reason we have to shuffle data prior # Chi and revert it afterwards. Prior shuffle is naturally merged with # Pi itself: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010) #vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101 # [3][1] [1][2] [4][3] [2][4] #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101) #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101 # [3][4] [1][3] [4][2] [2][1] #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010) #vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011 # [3][2] [1][4] [4][1] [2][3] #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011) #vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010 # [3][3] [1][1] [4][4] [2][2] # # And reverse post-Chi permutation: # # [0][4] [0][3] [0][2] [0][1] # [3][0] [1][0] [4][0] [2][0] #vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011) # [2][4] [4][3] [1][2] [3][1] #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-) # [3][4] [1][3] [4][2] [2][1] #vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101) # [1][4] [2][3] [3][2] [4][1] #vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010) # [4][4] [3][3] [2][2] [1][1] # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(*) # # Haswell 8.7/+10% # Skylake 7.8/+20% # Ryzen 17(**) # # (*) Corresponds to SHA3-256. Percentage after slash is improvement # coefficient in comparison to scalar keccak1600-x86_64.pl. # (**) It's expected that Ryzen performs poorly, because instruction # issue rate is limited to two AVX2 instructions per cycle and # in addition vpblendd is reportedly bound to specific port. # Obviously this code path should not be executed on Ryzen. my @T = map("%ymm$_",(7..15)); my ($C14,$C00,$D00,$D14) = @T[5..8]; $code.=<<___; .text .type __KeccakF1600,\@function .align 32 __KeccakF1600: lea rhotates_left+96(%rip),%r8 lea rhotates_right+96(%rip),%r9 lea iotas(%rip),%r10 mov \$24,%eax jmp .Loop_avx2 .align 32 .Loop_avx2: ######################################### Theta vpshufd \$0b01001110,$A20,$C00 vpxor $A31,$A41,$C14 vpxor $A11,$A21,@T[2] vpxor $A01,$C14,$C14 vpxor @T[2],$C14,$C14 # C[1..4] vpermq \$0b10010011,$C14,@T[4] vpxor $A20,$C00,$C00 vpermq \$0b01001110,$C00,@T[0] vpsrlq \$63,$C14,@T[1] vpaddq $C14,$C14,@T[2] vpor @T[2],@T[1],@T[1] # ROL64(C[1..4],1) vpermq \$0b00111001,@T[1],$D14 vpxor @T[4],@T[1],$D00 vpermq \$0b00000000,$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4] vpxor $A00,$C00,$C00 vpxor @T[0],$C00,$C00 # C[0..0] vpsrlq \$63,$C00,@T[0] vpaddq $C00,$C00,@T[1] vpor @T[0],@T[1],@T[1] # ROL64(C[0..0],1) vpxor $D00,$A20,$A20 # ^= D[0..0] vpxor $D00,$A00,$A00 # ^= D[0..0] vpblendd \$0b11000000,@T[1],$D14,$D14 vpblendd \$0b00000011,$C00,@T[4],@T[4] vpxor @T[4],$D14,$D14 # D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3] ######################################### Rho + Pi + pre-Chi shuffle vpsllvq 0*32-96(%r8),$A20,@T[3] vpsrlvq 0*32-96(%r9),$A20,$A20 vpor @T[3],$A20,$A20 vpxor $D14,$A31,$A31 # ^= D[1..4] from Theta vpsllvq 2*32-96(%r8),$A31,@T[4] vpsrlvq 2*32-96(%r9),$A31,$A31 vpor @T[4],$A31,$A31 vpxor $D14,$A21,$A21 # ^= D[1..4] from Theta vpsllvq 3*32-96(%r8),$A21,@T[5] vpsrlvq 3*32-96(%r9),$A21,$A21 vpor @T[5],$A21,$A21 vpxor $D14,$A41,$A41 # ^= D[1..4] from Theta vpsllvq 4*32-96(%r8),$A41,@T[6] vpsrlvq 4*32-96(%r9),$A41,$A41 vpor @T[6],$A41,$A41 vpxor $D14,$A11,$A11 # ^= D[1..4] from Theta vpermq \$0b10001101,$A20,@T[3] # $A20 -> future $A31 vpermq \$0b10001101,$A31,@T[4] # $A31 -> future $A21 vpsllvq 5*32-96(%r8),$A11,@T[7] vpsrlvq 5*32-96(%r9),$A11,@T[1] vpor @T[7],@T[1],@T[1] # $A11 -> future $A01 vpxor $D14,$A01,$A01 # ^= D[1..4] from Theta vpermq \$0b00011011,$A21,@T[5] # $A21 -> future $A41 vpermq \$0b01110010,$A41,@T[6] # $A41 -> future $A11 vpsllvq 1*32-96(%r8),$A01,@T[8] vpsrlvq 1*32-96(%r9),$A01,@T[2] vpor @T[8],@T[2],@T[2] # $A01 -> future $A20 ######################################### Chi vpsrldq \$8,@T[1],@T[7] vpandn @T[7],@T[1],@T[0] # tgting [0][0] [0][0] [0][0] [0][0] vpblendd \$0b00001100,@T[6],@T[2],$A31 # [4][4] [2][0] vpblendd \$0b00001100,@T[2],@T[4],@T[8] # [4][0] [2][1] vpblendd \$0b00001100,@T[4],@T[3],$A41 # [4][2] [2][4] vpblendd \$0b00001100,@T[3],@T[2],@T[7] # [4][3] [2][0] vpblendd \$0b00110000,@T[4],$A31,$A31 # [1][3] [4][4] [2][0] vpblendd \$0b00110000,@T[5],@T[8],@T[8] # [1][4] [4][0] [2][1] vpblendd \$0b00110000,@T[2],$A41,$A41 # [1][0] [4][2] [2][4] vpblendd \$0b00110000,@T[6],@T[7],@T[7] # [1][1] [4][3] [2][0] vpblendd \$0b11000000,@T[5],$A31,$A31 # [3][2] [1][3] [4][4] [2][0] vpblendd \$0b11000000,@T[6],@T[8],@T[8] # [3][3] [1][4] [4][0] [2][1] vpblendd \$0b11000000,@T[6],$A41,$A41 # [3][3] [1][0] [4][2] [2][4] vpblendd \$0b11000000,@T[4],@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0] vpandn @T[8],$A31,$A31 # tgting [3][1] [1][2] [4][3] [2][4] vpandn @T[7],$A41,$A41 # tgting [3][2] [1][4] [4][1] [2][3] vpblendd \$0b00001100,@T[2],@T[5],$A11 # [4][0] [2][3] vpblendd \$0b00001100,@T[5],@T[3],@T[8] # [4][1] [2][4] vpxor @T[3],$A31,$A31 vpblendd \$0b00110000,@T[3],$A11,$A11 # [1][2] [4][0] [2][3] vpblendd \$0b00110000,@T[4],@T[8],@T[8] # [1][3] [4][1] [2][4] vpxor @T[5],$A41,$A41 vpblendd \$0b11000000,@T[4],$A11,$A11 # [3][4] [1][2] [4][0] [2][3] vpblendd \$0b11000000,@T[2],@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4] vpandn @T[8],$A11,$A11 # tgting [3][3] [1][1] [4][4] [2][2] vpxor @T[6],$A11,$A11 vpermq \$0b00011110,@T[1],$A21 # [0][1] [0][2] [0][4] [0][3] vpblendd \$0b00110000,$A00,$A21,@T[8] # [0][1] [0][0] [0][4] [0][3] vpermq \$0b00111001,@T[1],$A01 # [0][1] [0][4] [0][3] [0][2] vpblendd \$0b11000000,$A00,$A01,$A01 # [0][0] [0][4] [0][3] [0][2] vpandn @T[8],$A01,$A01 # tgting [0][4] [0][3] [0][2] [0][1] vpblendd \$0b00001100,@T[5],@T[4],$A20 # [4][1] [2][1] vpblendd \$0b00001100,@T[4],@T[6],@T[7] # [4][2] [2][2] vpblendd \$0b00110000,@T[6],$A20,$A20 # [1][1] [4][1] [2][1] vpblendd \$0b00110000,@T[3],@T[7],@T[7] # [1][2] [4][2] [2][2] vpblendd \$0b11000000,@T[3],$A20,$A20 # [3][1] [1][1] [4][1] [2][1] vpblendd \$0b11000000,@T[5],@T[7],@T[7] # [3][2] [1][2] [4][2] [2][2] vpandn @T[7],$A20,$A20 # tgting [3][0] [1][0] [4][0] [2][0] vpxor @T[2],$A20,$A20 vpermq \$0b00000000,@T[0],@T[0] # [0][0] [0][0] [0][0] [0][0] vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle vpermq \$0b10001101,$A41,$A41 vpermq \$0b01110010,$A11,$A11 vpblendd \$0b00001100,@T[3],@T[6],$A21 # [4][3] [2][2] vpblendd \$0b00001100,@T[6],@T[5],@T[7] # [4][4] [2][3] vpblendd \$0b00110000,@T[5],$A21,$A21 # [1][4] [4][3] [2][2] vpblendd \$0b00110000,@T[2],@T[7],@T[7] # [1][0] [4][4] [2][3] vpblendd \$0b11000000,@T[2],$A21,$A21 # [3][0] [1][4] [4][3] [2][2] vpblendd \$0b11000000,@T[3],@T[7],@T[7] # [3][1] [1][0] [4][4] [2][3] vpandn @T[7],$A21,$A21 # tgting [3][4] [1][3] [4][2] [2][1] vpxor @T[0],$A00,$A00 vpxor @T[1],$A01,$A01 vpxor @T[4],$A21,$A21 ######################################### Iota vpxor (%r10),$A00,$A00 lea 32(%r10),%r10 dec %eax jnz .Loop_avx2 ret .size __KeccakF1600,.-__KeccakF1600 ___ my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx"); my $out = $inp; # in squeeze $code.=<<___; .globl SHA3_absorb .type SHA3_absorb,\@function .align 32 SHA3_absorb: mov %rsp,%r11 lea -240(%rsp),%rsp and \$-32,%rsp lea 96($A_flat),$A_flat lea 96($inp),$inp lea 96(%rsp),%r10 vzeroupper vpbroadcastq -96($A_flat),$A00 # load A[5][5] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 vpxor @T[0],@T[0],@T[0] vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack vmovdqa @T[0],32*3-96(%r10) vmovdqa @T[0],32*4-96(%r10) vmovdqa @T[0],32*5-96(%r10) vmovdqa @T[0],32*6-96(%r10) .Loop_absorb_avx2: mov $bsz,%rax sub $bsz,$len jc .Ldone_absorb_avx2 shr \$3,%eax vpbroadcastq 0-96($inp),@T[0] vmovdqu 8-96($inp),@T[1] sub \$4,%eax ___ for(my $i=5; $i<25; $i++) { $code.=<<___ dec %eax jz .Labsorved_avx2 mov 8*$i-96($inp),%r8 mov %r8,$A_jagged[$i]-96(%r10) ___ } $code.=<<___; .Labsorved_avx2: lea ($inp,$bsz),$inp vpxor @T[0],$A00,$A00 vpxor @T[1],$A01,$A01 vpxor 32*2-96(%r10),$A20,$A20 vpxor 32*3-96(%r10),$A31,$A31 vpxor 32*4-96(%r10),$A21,$A21 vpxor 32*5-96(%r10),$A41,$A41 vpxor 32*6-96(%r10),$A11,$A11 call __KeccakF1600 lea 96(%rsp),%r10 jmp .Loop_absorb_avx2 .Ldone_absorb_avx2: vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) vzeroupper lea (%r11),%rsp lea ($len,$bsz),%rax # return value ret .size SHA3_absorb,.-SHA3_absorb .globl SHA3_squeeze .type SHA3_squeeze,\@function .align 32 SHA3_squeeze: mov %rsp,%r11 lea 96($A_flat),$A_flat shr \$3,$bsz vzeroupper vpbroadcastq -96($A_flat),$A00 vpxor @T[0],@T[0],@T[0] vmovdqu 8+32*0-96($A_flat),$A01 vmovdqu 8+32*1-96($A_flat),$A20 vmovdqu 8+32*2-96($A_flat),$A31 vmovdqu 8+32*3-96($A_flat),$A21 vmovdqu 8+32*4-96($A_flat),$A41 vmovdqu 8+32*5-96($A_flat),$A11 mov $bsz,%rax .Loop_squeeze_avx2: mov @A_jagged[$i]-96($A_flat),%r8 ___ for (my $i=0; $i<25; $i++) { $code.=<<___; sub \$8,$len jc .Ltail_squeeze_avx2 mov %r8,($out) lea 8($out),$out je .Ldone_squeeze_avx2 dec %eax je .Lextend_output_avx2 mov @A_jagged[$i+1]-120($A_flat),%r8 ___ } $code.=<<___; .Lextend_output_avx2: call __KeccakF1600 vmovq %xmm0,-96($A_flat) vmovdqu $A01,8+32*0-96($A_flat) vmovdqu $A20,8+32*1-96($A_flat) vmovdqu $A31,8+32*2-96($A_flat) vmovdqu $A21,8+32*3-96($A_flat) vmovdqu $A41,8+32*4-96($A_flat) vmovdqu $A11,8+32*5-96($A_flat) mov $bsz,%rax jmp .Loop_squeeze_avx2 .Ltail_squeeze_avx2: add \$8,$len .Loop_tail_avx2: mov %r8b,($out) lea 1($out),$out shr \$8,%r8 dec $len jnz .Loop_tail_avx2 .Ldone_squeeze_avx2: vzeroupper lea (%r11),%rsp ret .size SHA3_squeeze,.-SHA3_squeeze .align 64 rhotates_left: .quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0] .quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4] .quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4] .quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4] .quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4] .quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4] rhotates_right: .quad 64-3, 64-18, 64-36, 64-41 .quad 64-1, 64-62, 64-28, 64-27 .quad 64-45, 64-6, 64-56, 64-39 .quad 64-10, 64-61, 64-55, 64-8 .quad 64-2, 64-15, 64-25, 64-20 .quad 64-44, 64-43, 64-21, 64-14 iotas: .quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001 .quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082 .quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a .quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000 .quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009 .quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a .quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088 .quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009 .quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a .quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b .quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b .quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089 .quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003 .quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002 .quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080 .quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a .quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081 .quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080 .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001 .quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008 .asciz "Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by " ___ print $code; close STDOUT;