/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "rand_lcl.h" #include "internal/thread_once.h" /* * Implementation of NIST SP 800-90A CTR DRBG. */ static void inc_128(RAND_DRBG_CTR *ctr) { int i; unsigned char c; unsigned char *p = &ctr->V[15]; for (i = 0; i < 16; i++, p--) { c = *p; c++; *p = c; if (c != 0) { /* If we didn't wrap around, we're done. */ break; } } } static void ctr_XOR(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { size_t i, n; if (in == NULL || inlen == 0) return; /* * Any zero padding will have no effect on the result as we * are XORing. So just process however much input we have. */ n = inlen < ctr->keylen ? inlen : ctr->keylen; for (i = 0; i < n; i++) ctr->K[i] ^= in[i]; if (inlen <= ctr->keylen) return; n = inlen - ctr->keylen; if (n > 16) { /* Should never happen */ n = 16; } for (i = 0; i < n; i++) ctr->V[i] ^= in[i + ctr->keylen]; } /* * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 */ static void ctr_BCC_block(RAND_DRBG_CTR *ctr, unsigned char *out, const unsigned char *in) { int i; for (i = 0; i < 16; i++) out[i] ^= in[i]; AES_encrypt(out, out, &ctr->df_ks); } /* * Handle several BCC operations for as much data as we need for K and X */ static void ctr_BCC_blocks(RAND_DRBG_CTR *ctr, const unsigned char *in) { ctr_BCC_block(ctr, ctr->KX, in); ctr_BCC_block(ctr, ctr->KX + 16, in); if (ctr->keylen != 16) ctr_BCC_block(ctr, ctr->KX + 32, in); } /* * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: * see 10.3.1 stage 7. */ static void ctr_BCC_init(RAND_DRBG_CTR *ctr) { memset(ctr->KX, 0, 48); memset(ctr->bltmp, 0, 16); ctr_BCC_block(ctr, ctr->KX, ctr->bltmp); ctr->bltmp[3] = 1; ctr_BCC_block(ctr, ctr->KX + 16, ctr->bltmp); if (ctr->keylen != 16) { ctr->bltmp[3] = 2; ctr_BCC_block(ctr, ctr->KX + 32, ctr->bltmp); } } /* * Process several blocks into BCC algorithm, some possibly partial */ static void ctr_BCC_update(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { if (in == NULL || inlen == 0) return; /* If we have partial block handle it first */ if (ctr->bltmp_pos) { size_t left = 16 - ctr->bltmp_pos; /* If we now have a complete block process it */ if (inlen >= left) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); ctr_BCC_blocks(ctr, ctr->bltmp); ctr->bltmp_pos = 0; inlen -= left; in += left; } } /* Process zero or more complete blocks */ for (; inlen >= 16; in += 16, inlen -= 16) { ctr_BCC_blocks(ctr, in); } /* Copy any remaining partial block to the temporary buffer */ if (inlen > 0) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); ctr->bltmp_pos += inlen; } } static void ctr_BCC_final(RAND_DRBG_CTR *ctr) { if (ctr->bltmp_pos) { memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); ctr_BCC_blocks(ctr, ctr->bltmp); } } static void ctr_df(RAND_DRBG_CTR *ctr, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *in3, size_t in3len) { static unsigned char c80 = 0x80; size_t inlen; unsigned char *p = ctr->bltmp; ctr_BCC_init(ctr); if (in1 == NULL) in1len = 0; if (in2 == NULL) in2len = 0; if (in3 == NULL) in3len = 0; inlen = in1len + in2len + in3len; /* Initialise L||N in temporary block */ *p++ = (inlen >> 24) & 0xff; *p++ = (inlen >> 16) & 0xff; *p++ = (inlen >> 8) & 0xff; *p++ = inlen & 0xff; /* NB keylen is at most 32 bytes */ *p++ = 0; *p++ = 0; *p++ = 0; *p = (unsigned char)((ctr->keylen + 16) & 0xff); ctr->bltmp_pos = 8; ctr_BCC_update(ctr, in1, in1len); ctr_BCC_update(ctr, in2, in2len); ctr_BCC_update(ctr, in3, in3len); ctr_BCC_update(ctr, &c80, 1); ctr_BCC_final(ctr); /* Set up key K */ AES_set_encrypt_key(ctr->KX, ctr->keylen * 8, &ctr->df_kxks); /* X follows key K */ AES_encrypt(ctr->KX + ctr->keylen, ctr->KX, &ctr->df_kxks); AES_encrypt(ctr->KX, ctr->KX + 16, &ctr->df_kxks); if (ctr->keylen != 16) AES_encrypt(ctr->KX + 16, ctr->KX + 32, &ctr->df_kxks); } /* * NB the no-df Update in SP800-90A specifies a constant input length * of seedlen, however other uses of this algorithm pad the input with * zeroes if necessary and have up to two parameters XORed together, * so we handle both cases in this function instead. */ static void ctr_update(RAND_DRBG *drbg, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *nonce, size_t noncelen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; /* ks is already setup for correct key */ inc_128(ctr); AES_encrypt(ctr->V, ctr->K, &ctr->ks); /* If keylen longer than 128 bits need extra encrypt */ if (ctr->keylen != 16) { inc_128(ctr); AES_encrypt(ctr->V, ctr->K + 16, &ctr->ks); } inc_128(ctr); AES_encrypt(ctr->V, ctr->V, &ctr->ks); /* If 192 bit key part of V is on end of K */ if (ctr->keylen == 24) { memcpy(ctr->V + 8, ctr->V, 8); memcpy(ctr->V, ctr->K + 24, 8); } if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { /* If no input reuse existing derived value */ if (in1 != NULL || nonce != NULL || in2 != NULL) ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len); /* If this a reuse input in1len != 0 */ if (in1len) ctr_XOR(ctr, ctr->KX, drbg->seedlen); } else { ctr_XOR(ctr, in1, in1len); ctr_XOR(ctr, in2, in2len); } AES_set_encrypt_key(ctr->K, drbg->strength, &ctr->ks); } static int drbg_ctr_instantiate(RAND_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; if (entropy == NULL) return 0; memset(ctr->K, 0, sizeof(ctr->K)); memset(ctr->V, 0, sizeof(ctr->V)); AES_set_encrypt_key(ctr->K, drbg->strength, &ctr->ks); ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen); return 1; } static int drbg_ctr_reseed(RAND_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *adin, size_t adinlen) { if (entropy == NULL) return 0; ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0); return 1; } static int drbg_ctr_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; if (adin != NULL && adinlen != 0) { ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0); /* This means we reuse derived value */ if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { adin = NULL; adinlen = 1; } } else { adinlen = 0; } for ( ; ; ) { inc_128(ctr); if (outlen < 16) { /* Use K as temp space as it will be updated */ AES_encrypt(ctr->V, ctr->K, &ctr->ks); memcpy(out, ctr->K, outlen); break; } AES_encrypt(ctr->V, out, &ctr->ks); out += 16; outlen -= 16; if (outlen == 0) break; } ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0); return 1; } static int drbg_ctr_uninstantiate(RAND_DRBG *drbg) { OPENSSL_cleanse(&drbg->data.ctr, sizeof(drbg->data.ctr)); return 1; } static RAND_DRBG_METHOD drbg_ctr_meth = { drbg_ctr_instantiate, drbg_ctr_reseed, drbg_ctr_generate, drbg_ctr_uninstantiate }; int drbg_ctr_init(RAND_DRBG *drbg) { RAND_DRBG_CTR *ctr = &drbg->data.ctr; size_t keylen; switch (drbg->nid) { default: /* This can't happen, but silence the compiler warning. */ return 0; case NID_aes_128_ctr: keylen = 16; break; case NID_aes_192_ctr: keylen = 24; break; case NID_aes_256_ctr: keylen = 32; break; } drbg->meth = &drbg_ctr_meth; ctr->keylen = keylen; drbg->strength = keylen * 8; drbg->seedlen = keylen + 16; if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { /* df initialisation */ static unsigned char df_key[32] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f, 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17, 0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }; /* Set key schedule for df_key */ AES_set_encrypt_key(df_key, drbg->strength, &ctr->df_ks); drbg->min_entropylen = ctr->keylen; drbg->max_entropylen = DRBG_MINMAX_FACTOR * drbg->min_entropylen; drbg->min_noncelen = drbg->min_entropylen / 2; drbg->max_noncelen = DRBG_MINMAX_FACTOR * drbg->min_noncelen; drbg->max_perslen = DRBG_MAX_LENGTH; drbg->max_adinlen = DRBG_MAX_LENGTH; } else { drbg->min_entropylen = drbg->seedlen; drbg->max_entropylen = drbg->seedlen; /* Nonce not used */ drbg->min_noncelen = 0; drbg->max_noncelen = 0; drbg->max_perslen = drbg->seedlen; drbg->max_adinlen = drbg->seedlen; } drbg->max_request = 1 << 16; drbg->reseed_interval = MAX_RESEED_INTERVAL; return 1; }